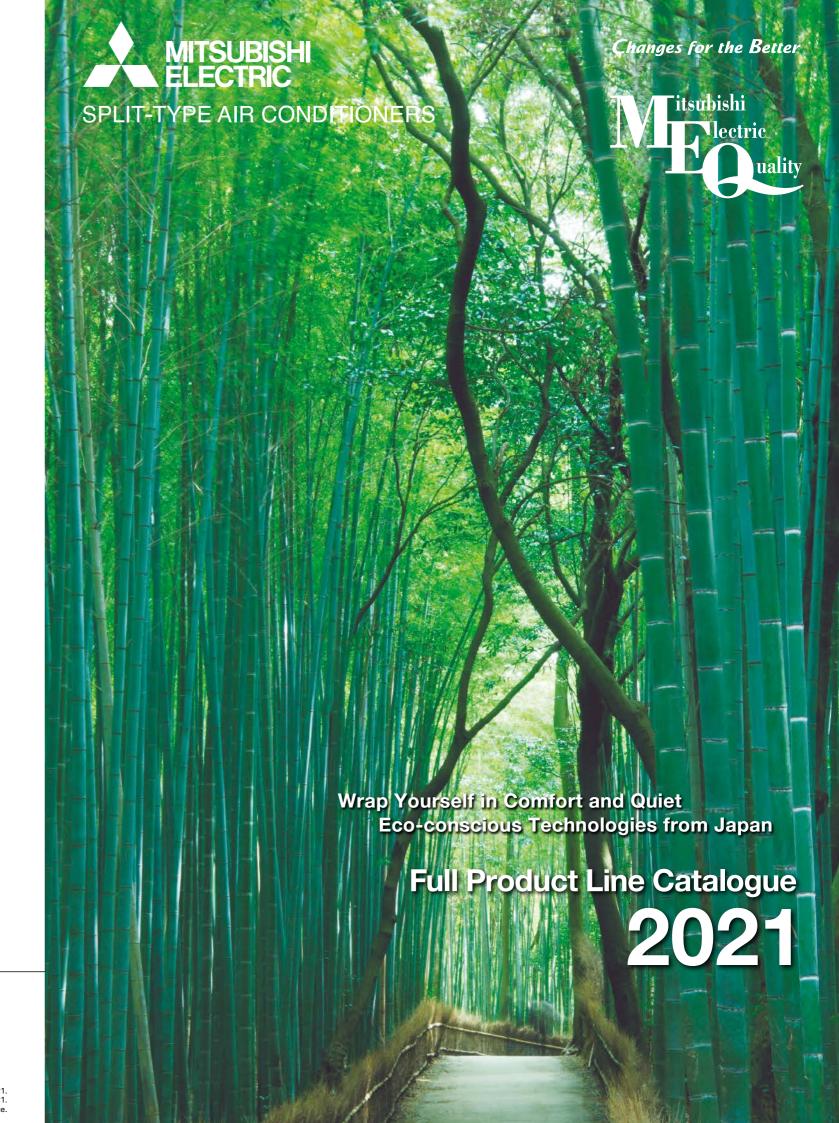
⚠ NOTICE


- Do not install indoor units in areas (e.g. mobile phone base stations) where the emission of VOCs such as phthalate compounds and formaldehyde is known to be high as this may result in a chemical reaction.
- Our air-conditioning equipments and heat pumps contain a fluorinated greenhouse gas, R410A (GWP: 2088) or R32 (GWP: 675). *These GWP values are based on Regulation (EU) No.517/2014 from IPCC 4th edition. In case of Regulation (EU) No.626/2011 from IPCC 3rd edition, these are as follows. R410A (GWP: 1975), R32 (GWP: 550)
- When installing or relocating or servicing our air-conditioning equipment, use only the specified refrigerant (R410A or R32) to charge the refrigerant lines.
- Do not mix it with any other refrigerant and do not allow air to remain in the lines.
- If air is mixed with the refrigerant, then it can be the cause of abnormal high pressure in the refrigerant lines, and may result in an explosion and other hazards.
- The use of any refrigerant other than that specified for the system will cause mechanical failure, system malfunction or unit breakdown. In the worst case, this could lead to a serious impediment to securing product safety.

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN http://Global.MitsubishiElectric.com/

Doing Our Part to Create a Better Future for All...

Core Environmental Policy

The Mitsubishi Electric Group promotes sustainable development and is committed to protecting and restoring the global environment through technology, through all its business activities, and through the actions of its employees.

Environmental Vision 2021

and its People through Technology and Action

Preventing Global Warming

- Reduce CO₂ emissions from product usage by 30%
 Reduce total CO₂ emissions from production by 30%
 Aim to reduce CO₂ emissions from

Creating a Recycling-Based Society

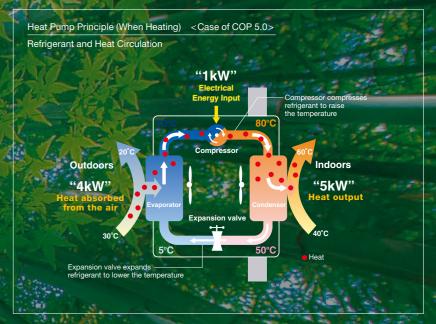
- Reduce, reuse and recycle "3Rs" products reduce resources used by 30%
 Zero emissions from manufacturing reducing the direct landfill of waste to zero

Ensuring Harmony with Nature Fostering Environmental Awareness

The New Refrigerant R32

The new R32 refrigerant has a global warming potential approximately 1/3*1 that of our current refrigerant, R410A; thereby dramatically reducing the negative impact more than ever. Actively introducing the new R32 refrigerant to suppress considering the environment.

> **Comparison of Global Warming Potential**



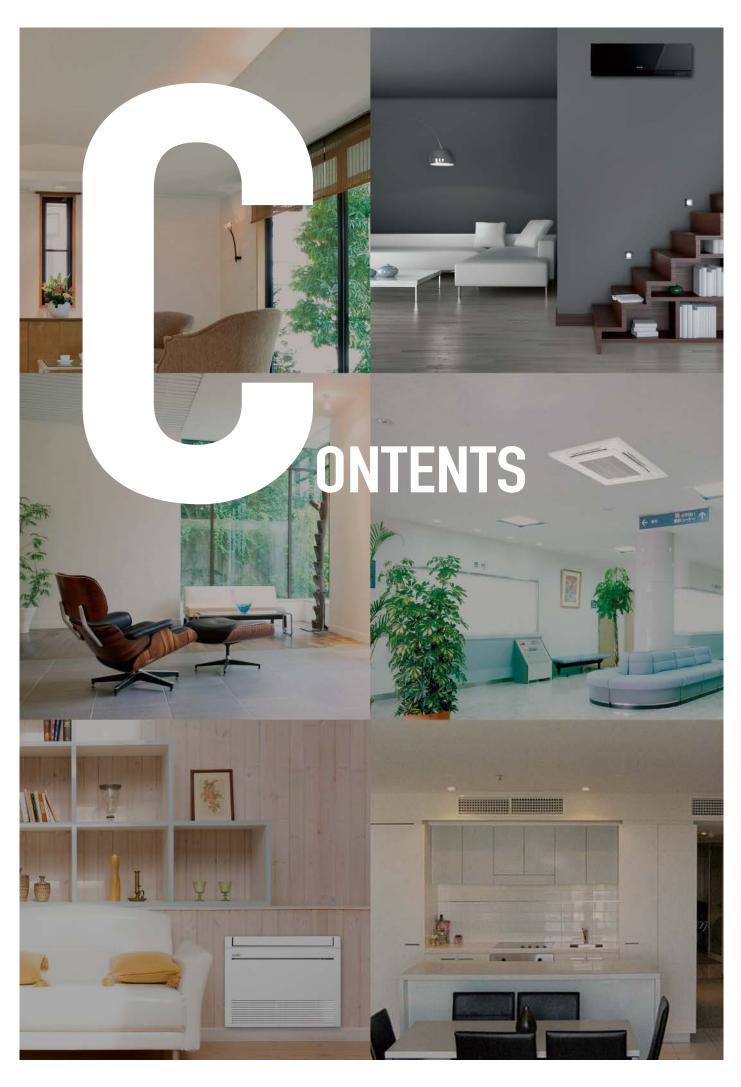
R410A

Source: IPCC 4th Assessment Report, global warming potential (GWP) 100-year value. Comparison of 2088 (R410A) and 675 (R32).

Mitsubishi Electric reflects the essence of this policy and vision in all aspects of its air conditioner business as well.

Preventing Global Warming
Heat pump technology inspires Mitsubishi Electric to design air conditioners that harmonize comfort and ecology.

Mitsubishi Electric develops technologies to balance comfort and ecology, achieving greater efficiency in heat pump operation.

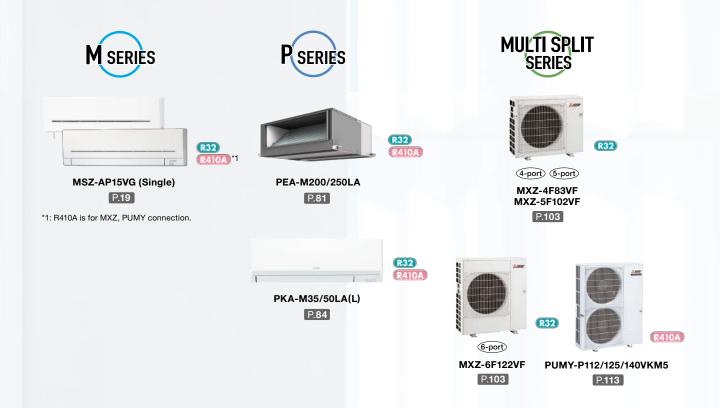

	Comfort	Ecology
1. Inverter	Faster start-up and more stable indoor temperature than non-inverter units.	Fewer On/Off operations than with non-inverter, saving energy.
2. 3D i-see Sensor	Since the positions of people can be detected, airflow can be set to personal taste, such as in airflow path or protected from the wind. The ability to adjust to individual preferences realizes more comfortable air conditioning.	Since the number of people in a room can be detected, energy-saving operation is adjusted or the power is turned off automatically. Efficient air conditioning with less waste is realized.
3. Flash Injection	Achieves high heating capacity even at low temperatures, plus faster start-up compared to conventional inverters.	Expands the region covered by heat pump heating system.

Creating a Recycling-Based Society

- 1. All models are designed for RoHS and WEEE compliance.*
- nology to reduce materials use.

Ensuring Harmony with Nature / Fostering Environmental Awareness

In striving to heighten the eco-awareness of its employees, Mitsubishi Electric provides education in RoHS, WEEE and other environmental regulations, education targeting second and third-year workers.



		^					
Λ	ir	חיו	nd	III	nn	01	·c

New releases in 2021	- 005-006
LINE-UP	- 007-010
M SERIES	··· 011-052
S SERIES	053-062
P SERIES	··· 063-100
MULTI SPLIT SERIES	··· 101–118
POWERFUL HEATING SERIES	··· 119-138
AIR-TO-WATER	
FEATURES & SPECIFICATIONS	·· 139–174
Air Conditioners	
NEW ECODESIGN DIRECTIVE	
INVERTER TECHNOLOGIES	·· 177–178
COMFORT	··· 179–182
CONVENIENCE	·· 183–184
■ INSTALLATION & MAINTENANCE	185 - 186
SYSTEM CONTROL	··· 187–188
CONTROL TECHNOLOGIES	189 - 196
SYSTEM CONTROL	·· 197–198
FUNCTION LIST	·· 199–206
OPTIONAL PARTS	207-216
EXTERNAL DIMENSIONS	- 217-234
PIPING INSTALLATION	235-242
M/S/P/Multi/Zubadan/ATW	
CONDITIONS FOR SPECIFICATION	243
HOW TO READ A MODEL NAME	243
REFRIGERANT AMOUNT	244
R32 REFRIGERANT	245-246
LOSSNAY	
FEATURES & SPECIFICATIONS	247-281

and Connect COMING SOON

New releases in 2021

P.163

LINE-UP

M SERIES

Market			1.5kW	1.8kW	2.0kW	2.2kW	2.5kW	3.5kW	4.2kW	5.0kW	6.0kW	7.1kW	Post
Model Nam	ie		1-phase	1-phase	1-phase	1-phase	1-phase	1-phase	1-phase	1-phase	1-phase	1-phase	Page
	MSZ-L Series R32 R410A*2			W-V-R-B Multi connection only			WVRB SINGLE	W-Y-R-B SINGLE		W-V-R-B SINGLE	W-V-R-B SINGLE		13
	MSZ-A Series R32 R410A*1	MSZ-AP15/20VG	SINGLE		SINGLE								19
	MS	MSZ-AP25/35/42/50VG					SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	19
	MSZ-E Series R32 R410A*1	-/-		W-S-B Multi connection only		W-S-B Multi connection only	W-S-B SINGLE H	W-S-B SINGLE H	W-S-B SINGLE	W-S-B SINGLE			25
	MSZ-BT Series	1			SINGLE		SINGLE	SINGLE		SINGLE			27
	MSZ-HR Series R32 MSZ	MSZ-HR25/35/42/50VF					SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	29
Wall- mounted	MSY-TP Series]~*						SINGLE		SINGLE			31
	MSZ-F Series	t tu,					SINGLE	SINGLE		SINGLE			33
	MSZ-S Series R410A	MSZ-SF15/20VA	Multi connection only		Multi connection only								35
	M	SZ-SF25/35/42/50VE3					SINGLE	SINGLE	SINGLE	SINGLE			35
	MSZ-G Series R410A	1-5									SINGLE	SINGLE	35
	MSZ-W Series R410A						SINGLE	SINGLE					39
	MSZ-D Series R410A						SINGLE	SINGLE					41
	MSZ-H Series R410A	MSZ-HJ25/35/50					SINGLE	SINGLE		SINGLE	SINGLE	SINGLE	43
Compact	MFZ Series						SINGLE	SINGLE		SINGLE	SINGLE		45
	MLZ Series						SINGLE	SINGLE		SINGLE			47

^{*1:} R410A is for MXZ and PUMY connection. *2: R410A is for PUMY connection.

H: Outdoor unit with freeze-prevention heater is available.
W-S-B: Indoor units are available in three colours; White, Black and Silver.
W-V-R-B: Indoor units are available in four colours; Natural White, Pearl White, Ruby Red, and Onyx Black.

Indoor Combinations

SINGLE 1 outdoor unit & 1 indoor unit

TWIN 1 outdoor unit & 2 indoor units

TRIPLE 1 outdoor unit & 3 indoor units

QUADRUPLE 1 outdoor unit & 4 indoor units

Model Nar		1.5kW	2.5kW	3.5kW	5.0kW	6.0kW	7.1kW	10.0kW	12.5kW	14.0kW	Page
Wodel Nai	TIE	1-phase	1-phase	1-phase	1-phase	1-phase	1-phase	1- & 3-phase	1- & 3-phase	1- & 3-phase	1 age
2 x 2 cassette	SLZ Series R32 R410A	Multi connection only	SINGLE	SINGLE	SINGLE	SINGLE	TWIN	TWIN TRIPLE	TWIN TRIPLE QUADRUPLE	TRIPLE Quadruple	55
Compact ceiling- concealed	SEZ Series R32 R410A		* SINGLE	* SINGLE	* SINGLE	* (SINGLE)	* (SINGLE)				60

^{*} Indoor units are available in two types; with or without the wireless remote controller.

P SERIES

R32 Power Inverter Models / R32 Standard Inverter Models

Model Name		3.5kW	5.0kW	6.0kW	7.1kW	10.0kW	12.5kW	14.0kW	20.0kW	25.0kW	Page
Model Name		1-phase	1-phase	1-phase	1-phase	1- & 3-phase	1- & 3-phase	1- & 3-phase	1- & 3-phase	1- & 3-phase	гауе
4-way cassette	PLA Series	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE TWIN TRIPLE	TWIN TRIPLE QUADRUPLE	TWIN TRIPLE QUADRUPLE	67
Ceiling-	PEAD Series R32	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE TWIN TRIPLE	TWIN TRIPLE QUADRUPLE	TWIN TRIPLE QUADRUPLE	76
concealed	PEA Series R32								SINGLE	SINGLE	81
Wall- mounted	PKA Series	* SINGLE	* SINGLE	* SINGLE	SINGLE * TWIN *	SINGLE	TWIN	TWIN	TWIN TRIPLE QUADRUPLE	TRIPLE	84
Ceiling- suspended	PCA-KA Series	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE	SINGLE TWIN TRIPLE	TWIN TRIPLE QUADRUPLE	TWIN TRIPLE QUADRUPLE	89
for Professional Kitchen	PCA-HA Series*				SINGLE*			* TWIN		* TRIPLE	94

* R32 Power Inverter Model only

R410A POWER INVERTER Models / R410A STANDARD INVERTER Models

Model Name		3.5kW	5.0kW	6.0kW	7.1kW	10.0kW	12.5kW	14.0kW	20.0kW	25.0kW	Daga
woder warne	iviodei ivame		1-phase	1-phase	1-phase	1- & 3-phase	1- & 3-phase	1- & 3-phase	3-phase	3-phase	Page
4-way cassette	PLA Series R410A	SINGLE	SINGLE	SINGLE	SINGLE *	SINGLE	SINGLE	SINGLE TWIN TRIPLE	TWIN TRIPLE QUADRUPLE	TWIN TRIPLE QUADRUPLE	67
Ceiling-	PEAD Series R410A	SINGLE	SINGLE	SINGLE	SINGLE *	SINGLE	SINGLE	SINGLE TWIN TRIPLE	TWIN TRIPLE QUADRUPLE	TWIN TRIPLE QUADRUPLE	76
concealed	PEA Series R410A								SINGLE	SINGLE	81
Wall- mounted	PKA Series R410A	* SINGLE	* SINGLE	* SINGLE	SINGLE * TWIN *	SINGLE	TWIN	TWIN	TWIN TRIPLE QUADRUPLE	TRIPLE QUADRUPLE	84
Ceiling- suspended	PCA-KA Series	SINGLE	SINGLE	SINGLE	SINGLE *	SINGLE	SINGLE	SINGLE TWIN TRIPLE	TWIN TRIPLE QUADRUPLE	TWIN TRIPLE QUADRUPLE	89
for Professional Kitchen	PCA-HA Series*				SINGLE *			TWIN *		* TRIPLE	94
Floor- standing	PSA Series R410A				SINGLE*	SINGLE	SINGLE	SINGLE TWIN	TWIN	TWIN TRIPLE	97

LINE-UP

MXZ SERIES INVERTER Models

Model Name	Capacity Class	Page
up to 2 indoor units R32 MXZ-2F33VF3	3.3kW <1-phase>	103
up to 2 indoor units MXZ-2F42VF3	4.2kW <1-phase>	103
up to 2 indoor units MXZ-2F53VF(H)3	5.3kW <1-phase>	103
up to 3 indoor units MXZ-3F54VF3	5.4kW <1-phase>	103
up to 3 indoor units MXZ-3F68VF3	6.8kW <1-phase>	103
up to 4 indoor units R32 MXZ-4F72VF3	7.2kW <1-phase>	103
up to 4 indoor units MXZ-4F80VF3	8.0kW <1-phase>	103
up to 4 indoor units MXZ-4F83VF	8.3kW <1-phase>	103
up to 5 indoor units MXZ-5F102VF	10.2kW <1-phase>	103
up to 6 indoor units MXZ-6F122VF	12.2kW <1-phase>	103
up to 2 indoor units MXZ-2HA40VF	4.0kW <1-phase>	107
up to 2 indoor units MXZ-2HA50VF	5.0kW <1-phase>	107
up to 3 indoor units MXZ-3HA50VF	5.0kW <1-phase>	107

Model Name	Ca	apacity Class	Page
up to 2 indoor units R410A MXZ-2D33VA		3.3kW <1-phase>	105
up to 2 indoor units MXZ-2D42VA2		4.2kW <1-phase>	105
up to 2 indoor units MXZ-2D53VA (H)2		5.3kW <1-phase>	105
up to 3 indoor units MXZ-3E54VA		5.4kW <1-phase>	105
up to 3 indoor units MXZ-3E68VA	0	6.8kW <1-phase>	105
up to 4 indoor units MXZ-4E72VA		7.2kW <1-phase>	105
up to 4 indoor units MXZ-4E83VA		8.3kW <1-phase>	105
up to 5 indoor units MXZ-5E102VA		10.2kW <1-phase>	105
up to 6 indoor units MXZ-6D122VA		12.2kW <1-phase>	105
up to 2 indoor units MXZ-2DM40VA	•	4.0kW <1-phase>	109
up to 3 indoor units MXZ-3DM50VA	0	5.0kW <1-phase>	109

PUMY SERIES INVERTER Models

Model Name	12.5kW 1 & 3-phase	14.0kW 1 & 3-phase	15.5kW 1 & 3-phase	22.4kW 3-phase	- Page
PUMY-SP R410A	/	1	1		111
PUMY-P R410A	/	✓	✓	✓	113

POWERFUL HEATING SERIES INVERTER Models

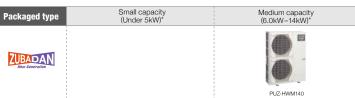
Model Nam			2.5kW	3.5kW	5.0kW	5.3kW	8.3kW	10.0kW	12.5kW	Page
Woder Nam	ie		1-phase	1-phase	1-phase	1-phase	1-phase	1- & 3-phase	3-phase	i age
		MSZ-L VGHZ Series R32 R410A *	SINGLE	SINGLE	SINGLE					121
Wal	ll-mounted	MSZ-FT VGHZ Series	SINGLE	SINGLE	SINGLE					123
		MSZ-F VEHZ Series	SINGLE	SINGLE	SINGLE					125
Con	mpact floor	MFZ VEHZ Series	SINGLE	SINGLE	SINGLE					127
	4-way cassette	PLA Series R32 R410A						SINGLE	SINGLE	130
ZUBADAN	Ceiling-concealed	PEAD Series R32 R410A						SINGLE		132
	Wall-mounted	PKA Series R32 R410A						SINGLE		133
Mul	lti split	MXZ-F VFHZ Series MXZ-E VAHZ Series R32 R410A				2PORT H	4PORT H			134

Indoor Combinations

SINGLE 1 outdoor unit & 1 indoor unit

TWIN 1 outdoor unit & 2 indoor units

TRIPLE 1 outdoor unit & 3 indoor units QUADRUPLE 1 outdoor unit & 4 indoor units


AIR TO WATER SERIES

INDOOR UNIT

Hydro box, cylinder unit

OUTDOOR UNIT

Spli	t ty	pe

*Rated capacity is at conditions A2W35. (according to EN14511)

R410A INDOOR UNIT

Hydro box, cylinder unit

OUTDOOR UNIT


Split type	Medium ((7.5kW–	capacity 14kW)*	Large capacity (≧16kW)*
ZUBADAN Teor dancertion	PUHZ-SHW80/112	PUHZ:SHW140	PUHZ-SHW230
POWER BAYERTER	PUHZ-SW75/100	PuHz-SW120	PUHZ-SW160/200

*Rated capacity is at conditions A2W35. (according to EN14511)

Other ATW-related system	Mr.SLIM+	PUMY + ecodan	ecodan geodan
	R410A	R410A	R32
		0	
	PUHZ-FRP71	PUMY-P112/125/140	EHGT17D-YM9ED

LOSSNAY SERIES

		Centralized	Ventilation			Decentralized	Ventilation
	(Ceiling Concealed Ty	ре		Vertical Type	Wall Moun	ed Type
LGH-RVX Series	LGH-RVXT Series	GUF Series	GUG Series (Optional Unit)	VI-220CZGV-E	VL-CZPVU Series	VL-100(E)Us-E	VL-50(E)S2-E VL-50SR2-E

SELECTION

Choose the model that best matches room conditions.

SELECT OUTDOOR UNIT

Some outdoor units in the line-up have heaters for use in cold regions. Units with an "H" in the model name are equipped with heaters.

Heater Installed

MUZ-AP25/35/42/50VGH MUZ-EF25/35VGH MUZ-SF25/35/42/50VEH

MUZ-LN25/35VG

Hyper Heating

MUZ-LN25/35/50VGHZ MUZ-FH25/35/50VEHZ MUFZ-KJ25/35/50VEHZ

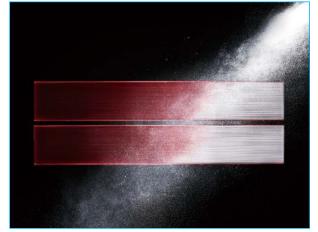
Selecting a Heater-equipped Model

In regions with the following conditions, there is a possibility that water resulting from condensation on the outdoor unit when operating in the heating mode will freeze and not drain from the base.

- 1) Cold outdoor temperatures (temperature does not rise above 0°C all day)
- Areas where dew forms easily (in the mountains, valleys(surrounded by mountains), near a forest, near unfrozen lakes, ponds, rivers or hot springs), or areas with snowfall.

To prevent water from freezing in the base, it is recommended that a unit with a built-in heater be purchased. Please ask your dealer representative about the best model for you.

MSZ-L SERIES



Developed to complement modern interior room décor, the LN Series is available in four colours specially chosen to blend in naturally wherever installed. Not only the sophisticated design, but also the optimum energy efficiency and operational comfort add even more value to this series.

Luminous and Luxurious Design

Natural White, Pearl White, Ruby Red, and Onyx Black. LN Series indoor units are available in four colours to match various lifestyles. The appearance of the indoor unit differs depending on the lighting in the room, attracting the attention of everyone that enters the room.

Master craftsmanship painting technology has resulted in a refined design, giving the finish deep colour and a premium quality feel.

Pearl White blends in with any interior.

Ruby Red gives an accent to the room, affording timeless elegance to sophisticated interiors.

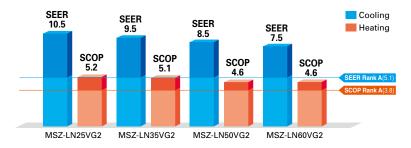
Onyx Black matches darker interiors, creating a comfortable environment.

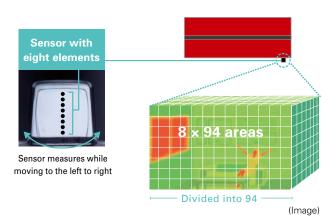
LED Backlight Remote Controller

Not only the indoor units, but the wireless remote controllers come in four colours as well. Each remote controller matches the indoor unit. Even the textures are the same.

The setting can be easily checked in the dark.

x Na k W


High Energy Efficiency



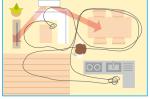
Optimum cooling/heating performance is another feature for the LN series. Models from capacities 25 to 50 have achieved the "Rank A+++" for SEER, and models for capacities 25 and 35 have achieved the "Rank A+++" for SCOP as well.

3D i-see Sensor

The LN Series is equipped with 3D i-see Sensor, an infrared-ray sensor that measures the temperature at distant positions. While moving to the left and right, eight vertically arranged sensor elements analyze the room temperature in three dimensions. This detailed analysis makes it possible to judge where people are in the room, thus allowing creation of features such as "Indirect airflow," to avoid airflow hitting people directly, and "direct airflow" to deliver airflow to where people are.

Indirect Airflow

The indirect airflow setting can be used when the flow of air feels too strong or direct. For example, it can be used during cooling to avert airflow and prevent body temperature from becoming excessively cooled.

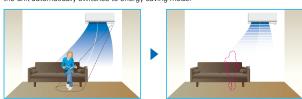


Direct Airflow

This setting can be used to directly target airflow at people such as for immediate comfort when coming indoors on a hot

Even Airflow *LN Series only Normal swing mode

The airflow is distributed equally throughout the room, even to spaces where there is no human movement.


Even airflow mode

The 3D i-see sensor memorizes human movement and furniture positions, and efficiently distributes airflow.

No occupancy energy-saving mode

The sensors detect whether there are people in the room. When no-one is in the room, the unit automatically switches to energy-saving mode.

The "3D i-see Sensor" detects people's absence and the power consumption is automatically reduced approximately 10% after 10 minutes and 20% after 60 minutes

No occupany Auto-OFF mode *LN Series only

The sensors detect whether or not there are people in the room. When there is no one in the room, the unit turns off automatically.

Circulator Operation

In case the indoor temperature reaches the setting temperature, the outdoor unit stops and the indoor unit starts FAN operation to circulate the indoor air.

The outdoor unit starts operation automatically when the indoor temperature drops below the setting temperature.

If the heating operation is continued, the warm air is formed around ceiling

(MSZ-LN18/25/35/50/60VG-SC Scandinavian model)

This operating can help to circulate and rense

14

Plasma Quad Plus

Plasma Quad Plus is a plasma-based filter system that effectively removes six kinds of air pollutants. Plasma Quad Plus captures mold and allergens more effectively than Plasma Quad. It can also capture PM2.5 and particles smaller than 2.5µm, creating healthy living spaces for all.

Bacteria

Test results have confirmed that Plasma Quad Plus neutralizes 99% of bacteria in 162 minutes in a $25 \mathrm{m}^3$ test space.

<Test No.> KRCES-Bio. Test Report No. 2016-0118

Viruses

Test results have confirmed that Plasma Quad Plus neutralizes 99% of virus particles in 72 minutes in a 25m³ test space.

<Test No.> vrc.center, SMC No. 28-002

Molds

Test results have confirmed that Plasma Quad Plus neutralizes 99% of mold in 135 minutes in a 25m³ test space.

<Test No.> Japan Food Research Laboratories Test Report No. 16069353001-0201

Allergens

In a test, air containing cat fur and pollen was passed through the air cleaning device at the low airflow setting. Before and after measurements confirm that Plasma Quad Plus neutralizes 98% of cat fur and pollen.

<Test No.> ITEA Report No. T1606028

PM2.5

Test results have confirmed that Plasma Quad Plus removes 99% of PM2.5 in 145 minutes in a 28m³ test space.

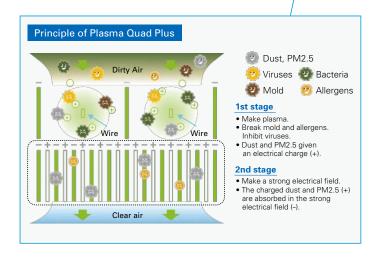
<In-company investigation>

Dust

Test results have confirmed that Plasma Quad Plus removes 99.7% of dust and mites.

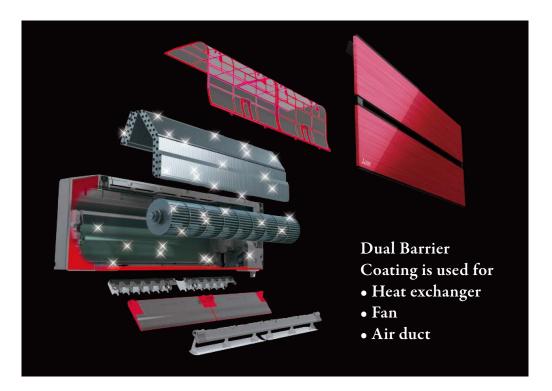
<Test No.> ITEA Report No. T1606028


Model	Name	Method	Bacteria	Viruses	Molds	Allergens	Dust	PM2.5*
FH Series	Plasma Quad	One-Stage Plasma	А	А	В	В	С	
LN Series	Plasma Quad Plus	Two-Stage Plasma	А	А	А	А	А	А


- A: Highly effective
- B: Effective
- C: Partially effective

*PM2.5:

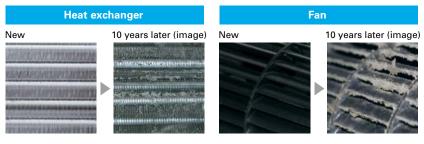
Particles smaller than 2.5µm


Image of Plasma Quad Plus

Dual Barrier Coating

A two-barrier coating prevents dust and greasy dirt from getting into the air conditioner.

State-of-the-art coating technology


Dirt is generally classified into two groups: hydrophilic dirt such as fiber dust and sand dust, and hydrophobic dirt such as oil and cigarette smoke. Mitsubishi Electric's dual barrier coating works as a two-barrier coating with blended "fluorine particles" that prevent hydrophilic dirt penetration and "hydrophilic particles" that prevent hydrophobic dirt from getting into the air conditioner. This dual coating on the inner surface keeps the air conditioner clean year-round.

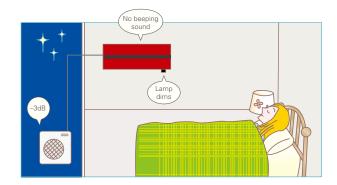
Comparison of dirt on heat exchanger, fan and air duct (in-house comparison)

Consequences when the inside of the indoor unit is left dirty.

- Deterioration in energy efficiency.
- Musty smell from the unit.

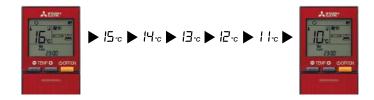
Double Flap

The vanes create various airflows to make each person in the room comfortable. Not only the horizontal vanes, but also the vertical vanes move independently, eliminating hot spots or cold spots throughout the room.



Night Mode

When Night Mode is activated using the wireless remote controller, air conditioner operation will switch to the following settings.

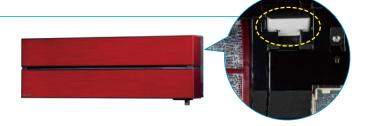

- The brightness of the operation indicator lamp will become dimmer.
- The beeping sound will be disabled.
- The outdoor operating noise will drop to 3dB lower than the rated operating noise specification.

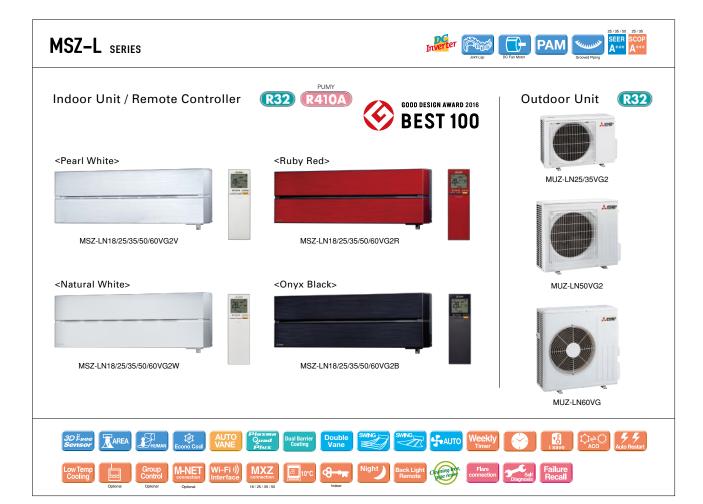
10°C Heating


During heating operation, the temperature can be set in 1°C increments down to 10°C.

This function can also be used with the Weekly Timer setting.

Quiet Operation


The indoor unit noise level is as low as 19dB for LN25/35 models, offering a peaceful inside environment.


Built-in Wi-Fi Interface

The indoor unit is equipped with a Wi-Fi Interface inside an exclusive pocket in the unit.

This eliminates the need to install a Wi-Fi interface, and also contributes to the beautiful appearance since the interface is hidden.

^{*}The cooling/heating capacity may drop.

Туре						Inverter Heat Pump		
Indoor Ur	nit			MSZ-LN18VG2	MSZ-LN25VG2	MSZ-LN35VG2	MSZ-LN50VG2	MSZ-LN60VG2
Outdoor	Unit			for MXZ connection	MUZ-LN25VG2	MUZ-LN35VG2	MUZ-LN50VG2	MUZ-LN60VG
Refrigera	nt				Sir	ngle: R32 ⁽¹⁾ / Multi: R410A or R32	2 ⁽⁻¹⁾	
Power	Source					Outdoor Power Supply		-
Supply	Outdoor (V / Ph	ase / Hz)				230 / Single / 50		
	Design load		kW	_	2.5	3.5	5.0	6.1
	Annual electricity	consumption (*2)	kWh/a	_	83	129	205	285
	SEER (*4)			_	10.5	9.5	8.5	7.5
Cooling		Energy efficiency class		_	A+++	A+++	A+++	A++
		Rated	kW	-	2.5	3.5	5.0	6.1
	Capacity	Min-Max	kW	-	1.0 - 3.5	0.8 - 4.0	1.0 - 6.0	1.4 - 6.9
	Total Input	Rated	kW	_	0.485	0.820	1.380	1.790
	Design load		kW	_	3.0 (-10°C)	3.6 (-10°C)	4.5 (-10°C)	6.0 (-10°C)
		at reference design temperature	_	_	3.0 (-10°C)	3.6 (-10°C)	4.5 (-10°C)	6.0 (-10°C)
	Declared	at bivalent temperature	kW	=-	3.0 (-10°C)	3.6 (-10°C)	4.5 (-10°C)	6.0 (-10°C)
	Capacity	at operation limit temperature	kW	-	2.5 (-15°C)	3.2 (-15°C)	4.2 (-15°C)	6.0 (-15°C)
leating	Back up heating	and the same of the same of	kW	-	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)
Average	Annual electricity		kWh/a	-	807	987	1369	1826
eason)(*5)	SCOP (*4)			_	5.2	5.1	4.6	4.6
		Energy efficiency class		_	A+++	A+++	A++	A++
		Rated	kW	_	3.2	4.0	6.0	6.8
	Capacity	Min-Max	kW	=	0.7 - 5.4	0.9 - 6.3	1.0 - 8.2	1.8 - 9.3
	Total Input Rated		kW	=	0.600	0.820	1.480	1,810
Operatin	g Current (Max)		A	_	7.1	9.9	13.9	15.2
	Input Rated		kW	0.027	0.027	0.027	0.034	0.040
	Operating Curre	ent(Max)	A	0.3	0.3	0.3	0.4	0.4
	Dimensions	H*W*D	mm	307-890-233	307-890-233	307-890-233	307-890-233	307-890-233
	Weight		kg	14.5 (W) 15.5 (V, R, B)	14.5 (W) 15.5 (V, R, B)	14.5 (W) 15.5 (V, R, B)	15 (W) 16 (V, R, B)	15 (W) 16 (V, R, B)
ndoor	Air Volume (SLo-Lo-	Cooling	m³/min	4.7 - 5.9 - 7.1 - 9.2 - 12.4	4.7 - 5.9 - 7.1 - 9.2 - 12.4	4.7 - 5.9 - 7.1 - 9.2 - 13.0	5.7 - 7.6 - 8.8 - 10.6 - 13.9	7.1 - 8.8 - 10.6 - 12.7 - 15.
Jnit	Mid-Hi-SHi ^(*3) (Dry/Wet))	Heating	m³/min	4.5 - 6.6 - 7.5 - 11.0 - 13.9	4.5 - 6.6 - 7.5 - 11.0 - 13.9	4.5 - 6.6 - 7.5 - 11.0 - 13.9	5.4 - 6.4 - 8.5 - 10.7 - 15.7	6.6 - 9.5 - 11.5 - 13.6 - 15.
	Sound Level (SPL)	Cooling	dB(A)	19 - 23 - 29 - 36 - 42	19 - 23 - 29 - 36 - 42	19 - 24 - 29 - 36 - 43	27 - 31 - 35 - 39 - 46	29 - 37 - 41 - 45 - 49
	(SLo-Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	19 - 24 - 29 - 38 - 45	19 - 24 - 29 - 38 - 45	19 - 24 - 29 - 38 - 45	25 - 29 - 34 - 39 - 47	29 - 37 - 41 - 45 - 49
	Sound Level (PWL)	Cooling	dB(A)	58	58	59	60	65
	Dimensions	H*W*D	mm	-	550-800-285	550-800-285	714-800-285	880-840-330
	Weight		kg	=	33	34	40	55
	- T	Cooling	m³/min	=	34.3	34.3	40.0	50.1
	Air Volume	Heating	m³/min	=	32.7	32.7	40.5	51.3
Outdoor		Cooling	dB(A)	=	46	49	51	55
Jnit	Sound Level (SPL)	Heating	dB(A)	=	49	50	54	55
	Sound Level (PWL)		dB(A)	-	60	61	64	65
	Operating Curre		Α Α	-	6.8	9.6	13.5	14.8
	Breaker Size		A	-	10	10	16	16
	Diameter	Liquid/Gas	mm	_	6.35/9.52	6.35/9.52	6.35/9.52	6.35/12.7
xt.	Max.Length	Out-In	m	=	20	20	30	30
Piping	Max.Height	Out-In	m	_	12	12	12	15
Guaranta	eed Operating	Cooling	*C	=	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46
	Outdoor)	Gooling Heating			-15 ~ +24	-15 ~ +24	-15 ~ +24	-15 ~ +24

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or Gassassmible the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.

(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) SHE, Super High
(*4) SEER, SOOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

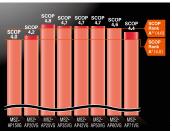
(*5) Please see page 51-52 for heating (warmer season) specifications.

MSZ-A SERIES

Introducing a compact and stylish indoor unit with various capacity, designed to match number of rooms. High performance indoor and outdoor units enabled to achieve "Rank A $^{+++}$ " for SEER. *MSZ-AP20/25/35VG

MSZ-AP25/35/42/50VG

MSZ-AP60/71VG



High energy saving

The classes from the low-capacity 25 to the high-capacity 60, have achieved either the "Rank A^{+++} " or "Rank A^{++} " for SEER and SCOP as energy-savings rating. Our air conditioners are contributing to reduce energy consumption in a wide range.

Compact and stylish

All the classes are introduced as single-split and multi-systems. From small rooms to living rooms, it is possible to coordinate residences with a unified design.

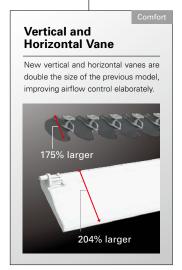
Evolved comfortable convenience function

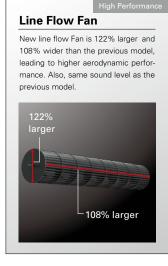
Horizontal Airflow

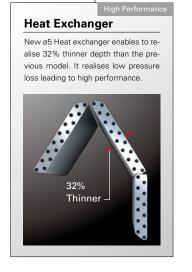
The new airflow control which spreads across the ceiling eliminates the uncomfortable drafty feeling.

Auto Vane Control

Auto vanes can be moved left and right, and up and down using the remote controller.*


The Function




*Only for 25/35/42/50/60/71 models.

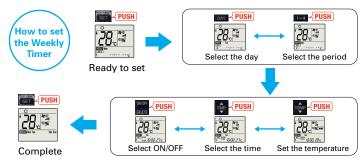
High performance and compact size are realised by refining all parts

"Weekly Timer"

Easily set desired temperatures and operation start/stop times to match lifestyle patterns. Reduce wasted energy consumption by using the timer to prevent forgetting to turn off the unit and eliminate temperature setting adjustments.

■ Example Operation Pattern (Winter/Heating mode)

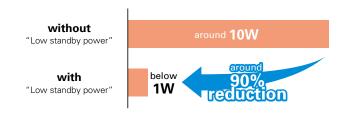
	Mo	on.	Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.
6:00	ON	20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C
	[Automatically change	s to high-power opera	tion at wake-up time		
8:00								
10:00	_		055	055	0.55	055	011 4000	011 4000
15:00	O	FF	OFF	OFF	OFF	OFF	ON 18°C Midday is warmer,	ON 18°C
14:00			Automatio	ally turned off during w	ork hours		so the temperature	
(b:00								
(8:00	ON	20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C
50:00			Automatically turi	ns on, synchronized wi	th arrival at home		Automatically raises ten	perature setting to de-air temperature is low
22:00	L		,	. ,			match time when outsit	le-all temperature is low
(during sleeping hours)	ON	18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C
	J.,			atically lowers tempera				3.1 10 0
							_	


Settings

Pattern Settings: Input up to four settings for each day

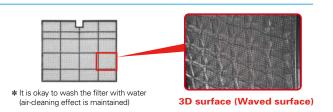
Settings: •Start/Stop operation •Temperature setting *The operation mode cannot be set.

■ Easy set-up using dedicated buttons



- Start by pushing the "SET" button and follow the instructions to set the desired patterns. Once all of the desired patterns are input, point the top end of the remote controller at the indoor unit and push the "SET" button one more time. (Push the "SET" button yafter inputting all of the desired patterns into the remote controller memory. Pushing the "CANCEL" button will end the set-up process without sending the operation patterns to the indoor unit).

 It takes a few seconds to transmit the Weekly Timer operation patterns to the indoor unit.
- Please continue to point the remote controller at the indoor unit until all data has been sent.
- •When "Weekly Timer" is set, temperature can not be set 10°C. (only for 15/20 models)


Low Standby Power

Electrical devices consume standby power even when they are not in actual use. While we obviously strive to reduce power consumption during actual use, reducing this wasted power that cannot be seen is also very important.

Air Purifying Filter

This filter generates stable antibacterial and deodourising effects. The size of the three-dimensional surface has been increased as well, enlarging the filter capture area. These features give the Air Purifying Filter better dust collection performance than conventional filters. The superior air-cleaning effectiveness raises room comfort yet another level.

(MSZ-AP25/35/42/50/60/71)

"i save" Mode

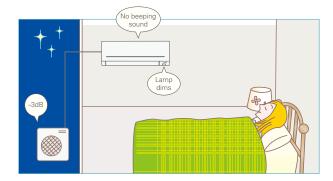
"i save" is a simplified setting function that recalls the preferred (preset) temperature by pressing a single button on the remote controller. Press the same button twice in repetition to immediately return to the previous temperature setting. Using this function contributes to comfortable, waste-free operation, realising the most suitable air conditioning settings and saving on power consumption when, for example, leaving the room or going to bed.

* Temperature can be preset to 10°C when heating in the "i-save" mode.

Outdoor Units for Cold Region

(MSZ-AP25/35/42/50)

Single split-type outdoor units are available in both standard and heater-equipped units. An electric heater is installed in each unit to prevent freezing in cold outdoor environments.


Night Mode

(MSZ-AP20/25/35/42/50/60/71)


When Night Mode is activated using the wireless remote controller, air conditioner operation will switch to the following settings.

- The brightness of the operation indicator lamp will become dimmer.
- The beeping sound will be disabled.
- The outdoor operating noise will drop to 3dB lower than the rated operating noise specification.

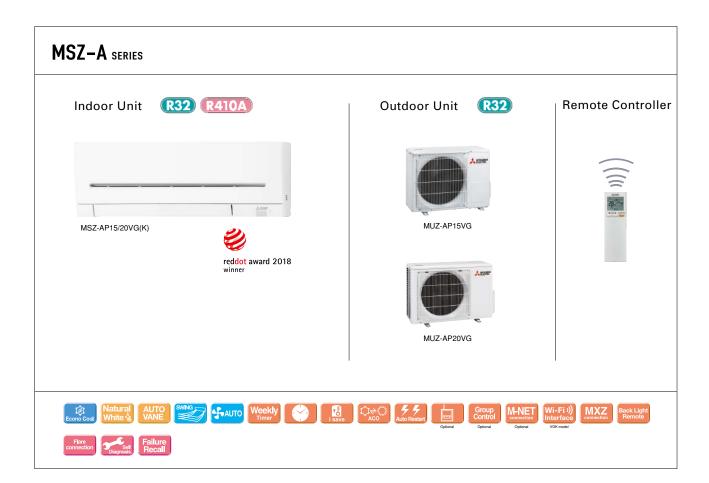
Quiet Operation

The indoor unit noise level is as low as 19dB for AP Series, offering a peaceful inside environment.

Built-in Wi-Fi Interface

(MSZ-AP15/20/25/35/42/50/60/71VGK)

The indoor unit is equipped with a Wi-Fi Interface inside an exclusive pocket in the unit.

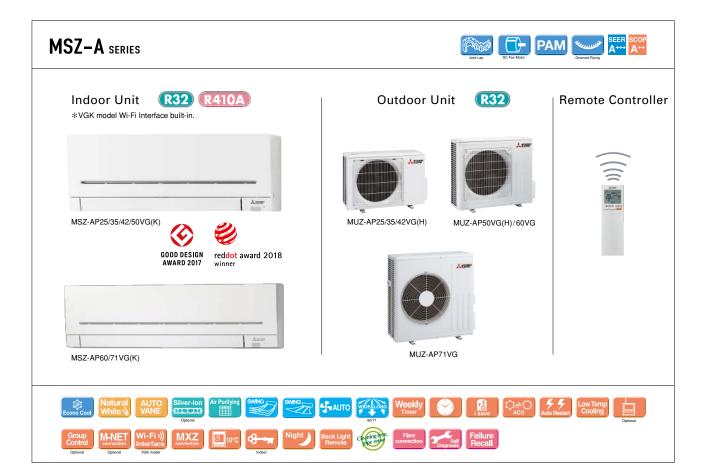

This eliminates the need to install a Wi-Fi interface, and also contributes to the beautiful appearance since the interface is hidden.

LED Backlight Remote Controller

Blacklight function incorporated, making screen easy to read in the dark. Even in dimly lit rooms, the screen can be seen clearly for trouble-free remote controller operation.

^{*}The cooling/heating capacity may drop.

Туре			_			Inverter H	leat Pump		
Indoor Ur	nit	· · · · · · · · · · · · · · · · · · ·		MSZ-AP15VG(K)	MSZ-AP20VG(K)	MSZ-AP25VG(K)	MSZ-AP25VG(K)	MSZ-AP35VG(K)	MSZ-AP35VG(K)
Outdoor I	Jnit			MUZ-AP15VG	MUZ-AP20VG	MUZ-AP25VG	MUZ-AP25VGH	MUZ-AP35VG	MUZ-AP35VGH
Refrigera	nt	-				Single: R32 ^(*1) / Mul	l		
Power	Source	-				Outdoor Po	ower supply		
Supply	Outdoor (V / Ph	ase / Hz)				230 / Si	ngle / 50		
	Design load	•	kW	1.5	2.0	2.5	2.5	3.5	3.5
	Annual electricity	consumption (*2)	kWh/a	72	81	101	101	142	142
	SEER (*4)			7.2	8.6	8.6	8.6	8.6	8.6
Cooling		Energy efficiency class		A++	A+++	A+++	A+++	A+++	A+++
		Rated	kW	1.5	2.0	2.5	2.5	3.5	3.5
	Capacity	Min-Max	kW	0.5-2.2	0.6-2.7	0.9-3.4	0.9-3.4	1.1-3.8	1.1-3.8
	Total Input	Rated	kW	0.370	0.460	0.600	0.600	0.990	0.990
	Design load		kW	1.6 (-10°C)	2.3 (-10°C)	2.4 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	2.9 (-10°C)
	DII	at reference design temperature	kW	1.6 (-10°C)	2.3 (-10°C)	2.4 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	2.9 (-10°C)
	Declared Capacity	at bivalent temperature	kW	1.6 (-10°C)	2.3 (-10°C)	2.4 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	2.9 (-10°C)
	Capacity	at operation limit temperature	kW	1.6 (-15°C)	2.2 (-15°C)	2.4 (-15°C)	2.2 (-20°C)	2.6 (-15°C)	2.4 (-20°C)
leating	Back up heating	capacity	kW	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)
Average	Annual electricity	consumption (*2)	kWh/a	559	766	698	703	862	873
eason)(*5)	SCOP (*4)			4.0	4.2	4.8	4.7	4.7	4.6
		Energy efficiency class		A+	A+	A++	A++	A++	A++
	Capacity	Rated	kW	2.0	2.5	3.2	3.2	4.0	4.0
	Сарасну	Min-Max	kW	0.5-3.1	0.5-3.5	1.0-4.1	1.0-4.1	1.3-4.6	1.3-4.6
	Total Input	Rated	kW	0.500	0.600	0.780	0.780	1.030	1.030
peratin	g Current (Max)		Α	5.5	7.0	7.1	7.1	8.5	8.5
			kW	0.017	0.019	0.026	0.026	0.026	0.026
1	Operating Curre		Α	0.17	0.2	0.3	0.3	0.3	0.3
	Dimensions	H*W*D	mm	250-760-178	250-760-178	299-798-219	299-798-219	299-798-219	299-798-219
ndoor	Weight		kg	8.2	8.2	10.5	10.5	10.5	10.5
Jnit	Air Volume (SLo-Lo-	Cooling	m³/min	3.5 - 3.9 - 4.6 - 5.5 - 6.4	3.5 - 3.9 - 4.6 - 5.5 - 6.9	4.9 - 5.9 - 7.1 - 8.7 - 11.4	4.9 - 5.9 - 7.1 - 8.7 - 11.4	4.9 - 5.9 - 7.1 - 8.7 - 11.4	4.9 - 5.9 - 7.1 - 8.7 - 11
	Mid-Hi-SHi ^(*3) (Dry/Wet))	Heating	m³/min	3.7 - 4.4 - 5.0 - 6.0 - 6.8	3.7 - 4.4 - 5.0 - 6.0 - 7.3	4.9 - 5.9 - 7.3 - 8.9 - 12.9	4.9 - 5.9 - 7.3 - 8.9 - 12.9	4.9 - 5.9 - 7.3 - 8.9 - 12.9	4.9 - 5.9 - 7.3 - 8.9 - 12
	Sound Level (SPL)	Cooling	dB(A)	21 - 26 - 30 - 35 - 40	21 - 26 - 30 - 35 - 42	19 - 24 - 30 - 36 - 42	19 - 24 - 30 - 36 - 42	19 - 24 - 30 - 36 - 42	19 - 24 - 30 - 36 - 42
	(SLo-Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	21 - 26 - 30 - 35 - 40	21 - 26 - 30 - 35 - 42	19 - 24 - 34 - 39 - 45	19 - 24 - 34 - 39 - 45	19 - 24 - 31 - 38 - 45	19 - 24 - 31 - 38 - 45
	Sound Level (PWL)	Cooling	dB(A)	59	60	57	57	57	57
	Dimensions	H*W*D	mm	538-699-249	550-800-285	550-800-285	550-800-285	550-800-285	550-800-285
	Weight	T	kg	23	31	31	31	31	31
	Air Volume	Cooling	m³/min	26	32.2	32.2	32.2	32.2	32.2
Outdoor		Heating	m³/min	21	29.8	29.8	29.8	33.8	33.8
Jnit	Sound Level (SPL)	Cooling	dB(A)	50	47	47	47	49	49
	· · · · · · · · · · · · · · · · · · ·	Heating	dB(A)	50	48	48	48	50	50
	Sound Level (PWL)	Cooling	dB(A)	63	59	59	59	61	61
	Operating Curre	ent (Max)	A	5.3	6.8	6.8	6.8	8.2	8.2
	Breaker Size	T	Α	10	10	10	10	10	10
xt.	Diameter	Liquid/Gas	mm	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52
Piping	Max.Length	Out-In	m	20	20	20	20	20	20
	Max.Height	Out-In	m	12	12	12	12	12	12
	ed Operating	Cooling	°C	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46
Range (C	utaoor)	Heating	°C	-15 ~ +24	-15 ~ +24	-15 ~ +24	-20 ~ +24	-15 ~ +24	-20 ~ +24


⁽¹⁾ Refigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

The GWP of R32 is 675 in the IPCC 4th Assessment Report.

(2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(3) Shit: Super High

(4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

Туре						Inverter F	leat Pump		
Indoor Ur	nit			MSZ-AP42VG(K)	MSZ-AP42VG(K)	MSZ-AP50VG(K)	MSZ-AP50VG(K)	MSZ-AP60VG(K)	MSZ-AP71VG(K)
Outdoor	Unit			MUZ-AP42VG	MUZ-AP42VGH	MUZ-AP50VG	MUZ-AP50VGH	MUZ-AP60VG	MUZ-AP71VG
Refrigera	nt				Single: R32(11) / Mu	lti: R410A or R32 ^(*1)		Single	: R32 ^(*1)
Power	Source						ower supply		
Supply	Outdoor (V / Ph	ase / Hz)				230 / Si	ngle / 50		
	Design load		kW	4.2	4.2	5.0	5.0	6.1	7.1
	Annual electricity	consumption (*2)	kWh/a	188	188	236	236	288	345
	SEER (*4)			7.8	7.8	7.4	7.4	7.4	7.2
Cooling		Energy efficiency class		A++	A++	A++	A++	A++	A++
		Rated	kW	4.2	4.2	5.0	5.0	6.1	7.1
	Capacity	Min-Max	kW	0.9-4.5	0.9-4.5	1.4-5.4	1.4-5.4	1.4-7.3	2.0-8.7
	Total Input	Rated	kW	1.300	1.300	1.550	1.550	1.590	2.010
	Design load		kW	3.8 (-10°C)	3.8 (-10°C)	4.2 (-10°C)	4.2 (-10°C)	4.6 (-10°C)	6.7 (-10°C)
	_	at reference design temperature	kW	3.8 (-10°C)	3.8 (-10°C)	4.2 (-10°C)	4.2 (-10°C)	4.6 (-10°C)	6.7 (-10°C)
	Declared	at bivalent temperature	kW	3.8 (-10°C)	3.8 (-10°C)	4.2 (-10°C)	4.2 (-10°C)	4.6 (-10°C)	6.7 (-10°C)
	Capacity	at operation limit temperature	kW	4.2 (-15°C)	3.8 (-20°C)	4.7 (-15°C)	4.2 (-20°C)	3.7 (-15°C)	5.4 (-15°C)
Heating	Back up heating		kW	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)
Average	Annual electricity		kWh/a	1120	1134	1250	1275	1398	2132
Season)(*5)	SCOP (*4)			4.7	4.6	4.7	4.6	4.6	4.4
		Energy efficiency class		A++	A++	A++	A++	A++	A+
		Rated	kW	5.4	5.4	5.8	5.8	6.8	8.1
	Capacity	Min-Max	kW	1.3-6.0	1.3-6.0	1.4-7.3	1.4-7.3	2.0-8.6	2.2-10.3
	Total Input	Rated	kW	1.490	1.490	1.600	1.600	1.670	2.120
Operatin	g Current (Max)		Α	9.9	9.9	13.6	13.6	14.1	16.4
	Input	Rated	kW	0.032	0.032	0.032	0.032	0.049	0.045
	Operating Current (Max)		Α	0.3	0.3	0.3	0.3	0.5	0.4
	Dimensions	H*W*D	mm	299-798-219	299-798-219	299-798-219	299-798-219	325-1100-257	325-1100-257
	Weight		kg	10.5	10.5	10.5	10.5	16.0	17.0
Indoor Unit	Air Volume (SLo-Lo-	Cooling	m³/min	5.4 - 6.5 - 7.7 - 9.3 - 11.4	5.4 - 6.5 - 7.7 - 9.3 - 11.4	6.0 - 7.2 - 8.4 - 10.0 - 12.6	6.0 - 7.2 - 8.4 - 10.0 - 12.6	9.4 - 11.0 - 13.2 - 16.0 - 18.9	9.6 - 11.5 - 13.2 - 15.3 - 18
Offic	Mid-Hi-SHi ¹⁻³⁾ (Dry/Wet))	Heating	m³/min	5.3 - 6.1 - 7.7 - 9.4 - 14.0	5.3 - 6.1 - 7.7 - 9.4 - 14.0	5.6 - 6.5 - 8.2 - 10.0 - 14.0	5.6 - 6.5 - 8.2 - 10.0 - 14.0	10.8- 13.4 - 15.4 - 17.4 - 20.3	10.2-11.5 - 13.2 - 15.3 - 19
	Sound Level (SPL)	Cooling	dB(A)	21 - 29 - 34 - 38 - 42	21 - 29 - 34 - 38 - 42	28 - 33 - 36 - 40 - 44	28 - 33 - 36 - 40 - 44	29 - 37 - 41 - 45 - 48	30 - 37 - 41 - 45 - 49
	(SLo-Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	21 - 29 - 35 - 40 - 45	21 - 29 - 35 - 40 - 45	28 - 33 - 38 - 43 - 48	28 - 33 - 38 - 43 - 48	30 - 37 - 41 - 45 - 48	30 - 37 - 41 - 45 - 51
	Sound Level (PWL)	Cooling	dB(A)	57	57	58	58	65	65
	Dimensions	H*W*D	mm	550-800-285	550-800-285	714-800-285	714-800-285	714-800-285	880-840-330
	Weight		kg	35	35	40	40	40	55
	Air Volume	Cooling	m³/min	30.4	30.4	40.5	40.5	52.1	54.1
0	All Volume	Heating	m³/min	32.7	32.7	40.5	40.5	52.1	47.9
Outdoor Unit	Sound Level (SPL)	Cooling	dB(A)	50	50	52	52	56	56
J.111	Souriu Lever (SPL)	Heating	dB(A)	51	51	52	52	57	55
	Sound Level (PWL)	Cooling	dB(A)	61	61	64	64	69	69
	Operating Curre	ent (Max)	А	9.6	9.6	13.3	13.3	13.6	16.0
	Breaker Size		А	10	10	16	16	16	20
	Diameter	Liquid/Gas	mm	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7	6.35 / 12.7
Ext. Piping	Max.Length	Out-In	m	20	20	20	20	30	30
pmg	Max.Height	Out-In	m	12	12	12	12	15	15
	eed Operating	Cooling	°C	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46
Range (C	Outdoor)	Heating	°C	-15 ~ +24	-20 ~ +24	-15 ~ +24	-20 ~ +24	-15 ~ +24	-15 ~ +24

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or 6x82 is 675 in the IPCC 4th Assessment Report.

(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) SHs. Super High

(*4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(*5) Please see page 51-52 for heating (warmer season) specifications.

24

Developed to complement modern interior room décor, Kirigamine ZEN air conditioners are available in three colours specially chosen to blend in naturally wherever installed.

Stylish Line-up Matches Any Room Décor

Energy-efficient Operation

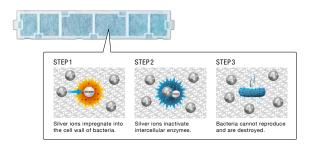
The streamlined wall-mounted indoor units have eloquent silver-bevelled edges, expressing sophistication and quality. Combining impressively low power consumption and quiet yet powerful performance, these units provide a bestmatch scenario for diverse interior designs while simultaneously ensuring maximum room and energy savings.

All models in the series have achieved high energy-savings rating, and are contributing to reduced energy consumption in homes, offices and a range of other settings. Offered in a variety of output capacities and installation patterns, the vast applicability promises an ideal match for any user.

Outdoor	Rank A for single connection			Compa	atibility		
	MUZ-EF25/35VG(H)			M	XZ		
Indoor	MUZ-EF42/50VG	2F33VF	2F42VF	2F53VF	3F54VF	3F68VF	4F72VF
MSZ-EF18VG	_	~	~	~	>	~	~
MSZ-EF22VG	_	~	~	~	>	~	~
MSZ-EF25VG	A +++/ A++(A++*)	~	~	~	>	~	~
MSZ-EF35VG	A +++/ A++(A+*)		~	~	>	~	~
MSZ-EF42VG	A++/A++			~	>	~	~
MSZ-EF50VG	A++/A+			~	>	~	~

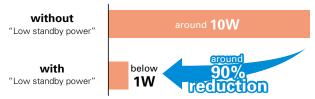
Quiet Comfort All Day Long

Mitsubishi Electric's advanced "Silent Mode" fan speed setting provides super-quiet operation as low as 19dB for EF18/22/25 models for cooling. This unique feature makes the Kirigamine ZEN series ideal for use in any situation


Superior Exterior and Operating Design Concept


The indoor unit of the Kirigamine ZEN keeps its amazingly thin form even during operation. The only physical change notable is the movement of the variable vent. As a result, a slim attractive look is maintained.

Silver-ionized Air Purifier Filter


The high performance filter is attached as standard. Captures the bacteria, pollen and other allergens in the air and neutralises them.

Low Standby Power

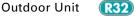
Electrical devices consume standby power even when they are not in actual use. While we obviously strive to reduce power consumption during actual use, reducing this wasted power that cannot be seen is also very important.

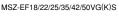
Outdoor Units for Cold Region

(25/35)

Single split-type outdoor units are available in both standard and heater-equipped units. An electric heater is installed in each unit to prevent freezing in cold outdoor environments.

MSZ-E SERIES

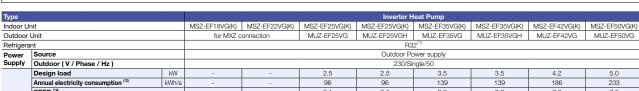




MUZ-EF25/35VG(H).42VG

MSZ-EF18/22/25/35/42/50VG(K)B*

- * Soft-dry Cloth is enclosed with Black models.



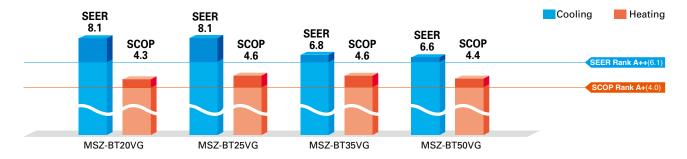
Committee							000000110				
Supply	Design load Annual electricity consumption (*2) SEER (*4)							ngle/50			
			kW	-	-	2.5	2.5	3.5	3.5	4.2	5.0
		consumption (*2)	kWh/a	-	-	96	96	139	139	186	233
	SEER (*4)			-	-	9.1	9.1	8.8	8.8	7.9	7.5
Cooling		Energy efficiency class		-	-	A+++	A+++	A+++	A+++	A++	A++
	Capacity	Rated	kW	-	-	2.5	2.5	3.5	3.5	4.2	5.0
	Capacity	Min-Max	kW		-	0.9-3.4	0.9-3.4	1.1-4.0	1.1-4.0	0.9-4.6	1.4-5.4
	Total Input	Rated	kW	=	-	0.540	0.540	0.910	0.910	1.200	1.540
	Design load		kW	-	-	2.4 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	2.9 (-10°C)	3.8 (-10°C)	4.2 (-10°C)
		at reference design temperature	kW	-	-	2.4 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	2.9 (-10°C)	3.8 (-10°C)	4.2 (-10°C)
	Declared Capacity	at bivalent temperature	kW	-	-	2.4 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	2.9 (-10°C)	3.8 (-10°C)	4.2 (-10°C)
	Capacity	at operation limit temperature	kW	-	-	2.0 (-15°C)	1.6 (-20°C)	2.4 (-15°C)	1.7 (-20°C)	3.4 (-15°C)	3.5 (-15°C)
Heating	Back up heating	capacity	kW	-	-	0.0 (-10°C)					
(Average	Annual electricity	consumption (*2)	kWh/a	-	-	713	727	882	900	1151	1304
Season)(*5)	SCOP (*4)			-	-	4.7	4.6	4.6	4.5	4.6	4.5
		Energy efficiency class		-	-	A++	A++	A++	A+	A++	A+
		Rated	kW	-	-	3.2	3.2	4.0	4.0	5.4	5.8
	Capacity	Min-Max	kW	-	-	1.0-4.2	1.0-4.2	1.3-5.1	1.3-5.1	1.3-6.3	1.4-7.5
	Total Input	Rated	kW	-	-	0.700	0.700	0.950	0.950	1.455	1.560
Operating	Current (Max)		А	_	_	7.1	7.1	7.1	7.1	10.0	14
	Input	Rated	kW	0.026	0.026	0.026	0.026	0.030	0.030	0.033	0.043
	Operating Current (Max)		А	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4
	Dimensions H*W*D		mm	299-885-195	299-885-195	299-885-195	299-885-195	299-885-195	299-885-195	299-885-195	299-885-195
	Weight		kg	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
Indoor	Air Volume (SLo-Lo-	Cooling	m³/min	4.0 - 4.6 - 6.3 - 8.3 - 10.5	4.0 - 4.6 - 6.3 - 8.3 - 10.5	4.0 - 4.6 - 6.3 - 8.3 - 10.5	4.0 - 4.6 - 6.3 - 8.3 - 10.5	4.0 - 4.6 - 6.3 - 8.3 - 10.5	4.0 - 4.6 - 6.3 - 8.3 - 10.5	5.8 - 6.6 - 7.7 - 8.9 - 11.2	58-68-79-92-113
Unit	Mid-Hi-SHi ^(*3) (Dry/Wet))	Heating	m³/min	4.0 - 4.6 - 6.2 - 8.9 - 11.9			4.0 - 4.6 - 6.2 - 8.9 - 11.9	4.0 - 4.6 - 6.2 - 8.9 - 12.7			6.4 - 7.2 - 9.0 - 11.1 - 14.6
	Sound Level (SPL)	Cooling	dB(A)	19 - 23 - 29 - 36 - 42			19 - 23 - 29 - 36 - 42				
	(SLo-Lo-Mid-Hi-SHi(*3))	Heating	dB(A)				21 - 24 - 29 - 37 - 45		21 - 24 - 30 - 38 - 46		
	Sound Level (PWL)	Cooling	dB(A)	60	60	60	60	60	60	60	60
	Dimensions	H*W*D	mm	-	-	550-800-285	550-800-285	550-800-285	550-800-285	550-800-285	714-800-285
	Weight		kg	_	_	31	31	34	34	35	40
	•	Cooling	m³/min	-	-	27.8	27.8	34.3	34.3	32.0	40.2
	Air Volume	Heating	m³/min	-	-	29.8	29.8	32.7	32.7	32.7	40.2
Outdoor		Cooling	dB(A)	-	-	47	47	49	49	50	52
Unit	Sound Level (SPL)	Heating	dB(A)	_		48	48	50	50	51	52
	Sound Level (PWL)		dB(A)	_		58	58	62	62	62	65
	Operating Curre		A	_		6.8	6.8	6.8	6.8	9.6	13.6
	Breaker Size	in (max)	A	_	_	10	10	10	10	12	16
	Diameter	Liquid/Gas	mm			6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52
Ext.	Max.Length	Out-In	m	-	-	20	20	20	20	20	30
	Max.Height	Out-In	m	-	-	12	12	12	12	12	15
	ed Operating	Cooling	°C	-	-	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46
Range (O		Heating	°C	-	-	-10 ~ +40 -15 ~ +24	-10 ~ +46	-10 ~ +40 -15 ~ +24	-10 ~ +46 -20 ~ +24	-10 ~ +40 -15 ~ +24	-15 ~ +24
		Heating		-			-20 ~ +24	-15 ~ +24		-10 ~ +24	-10 ~ +24

[°]C (*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or 638seshible the product yourself or product yourself and always ask a professional. The GWP of 182 is 675 in the IPCC 4th Assessment Report.

(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) SH: Super High

(*4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".


(*5) Please see page 51-52 for heating (warmer season) specifications.

High Energy Efficiency for Entire Range of Series



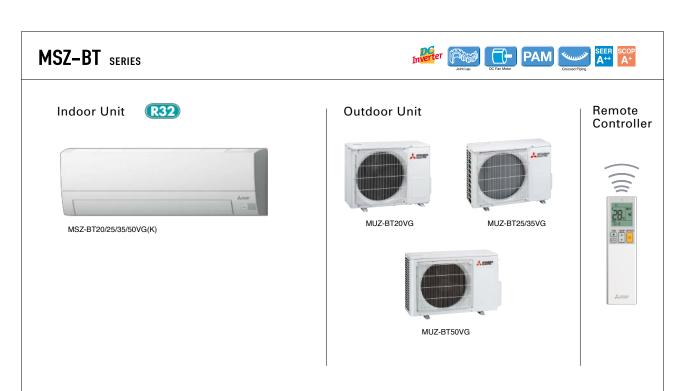
All models in the series, from the low-capacity 20 to the high-capacity 50, have achieved the "Rank A++" for SEER and size 25 and 35 have achieved the "Rank A++" for SCOP as energy-savings rating. For home use, such as in bedrooms and living rooms, to light commercial use, such as in offices, our air conditioners are contributing to reduced energy consumption in a wide range.

Quiet Operation

The indoor unit noise level is as low as 19dB for AP Series, offering a peaceful inside environment.

New Remote Controller

New stylish and compact remote controller features easy-read big display and simple button position with fundamental functions.


Built-in Wi-Fi Interface

(MSZ-BT20/25/35/50VGK)

The indoor unit is equipped with a Wi-Fi Interface inside an exclusive pocket in the unit

This eliminates the need to install a Wi-Fi interface, and also contributes to the beautiful appearance since the interface is hidden.

AUTO Silver-ion SMNG SAUTO Auto Restart Cooling

Туре					Inverter F	leat Pump	
Indoor Ur	nit			MSZ-BT20VG(K)	MSZ-BT25VG(K)	MSZ-BT35VG(K)	MSZ-BT50VG(K)
Outdoor I	Jnit			MUZ-BT20VG	MUZ-BT25VG	MUZ-BT35VG	MUZ-BT50VG
Refrigera	nt				R3	(2 ^(*1)	
Power	Source				Outdoor Po	ower supply	
Supply	Outdoor (V/Ph	ase / Hz)			230V/Sir	ngle/50Hz	
	Design load		kW	2.0	2.5	3.5	5.0
	Annual electricity	consumption (*2)	kWh/a	86	108	180	265
	SEER (*4)			8.1	8.1	6.8	6.6
Cooling		Energy efficiency class	,	A++	A++	A++	A++
	Capacity	Rated	kW	2.0	2.5	3.5	5.0
	Capacity	Min-Max	kW	0.5-2.9	0.5-3.0	0.9-3.5	1.3-5.0
	Total Input	Rated	kW	0.450	0.700	1.240	2.050
	Design load		kW	1.5 (-10°C)	1.9 (-10°C)	2.4 (-10°C)	3.8 (-10°C)
	D11	at reference design temperature		1.5 (-10°C)	1.9 (-10°C)	2.4 (-10°C)	3.8 (-10°C)
	Declared Capacity	at bivalent temperature	kW	1.5 (-10°C)	1.9 (-10°C)	2.4 (-10°C)	3.8 (-10°C)
		at operation limit temperature	kW	1.3 (-15°C)	1.7 (-15°C)	2.1 (-15°C)	3.4 (-15°C)
Heating	Back up heating	capacity	kW	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)
(Average	Annual electricity	consumption (*2)	kWh/a	487	577	727	1209
Season)(*5)	SCOP (*4)			4.3	4.6	4.6	4.4
		Energy efficiency class		A ⁺	A ⁺⁺	A ⁺⁺	A ⁺
	Capacity	Rated	kW	2.5	3.15	3.6	5.4
	Capacity	Min-Max	kW	0.7-3.2	0.7-3.5	0.9-4.1	1.4-6.5
	Total Input	Rated	kW	0.550	0.750	0.930	1.550
Operatin	g Current (Max)		Α	5.6	7.0	7.0	10.0
	Input	Rated	kW	0.024	0.024	0.031	0.037
	Operating Curre	ent(Max)	A	0.25	0.25	0.31	0.35
	Dimensions	H*W*D	mm	280-838-235	280-838-235	280-838-235	280-838-235
	Weight		kg	9	9	9	9
Indoor Unit	Air Volume (Lo-Mid-	Cooling	m³/min	4.2 - 5.2 - 6.8 - 8.7 - 10.9	4.2 - 5.2 - 6.8 - 8.7 - 10.9	4.2 - 5.2 - 6.8 - 8.7 - 13.2	6.3 - 7.6 - 9.0 - 11.0 - 13.2
Oiiii	Hi-SHi ^(*3) (Dry/Wet))	Heating	m³/min	4.2 - 5.0 - 6.8 - 9.0 - 11.9	4.2 - 5.0 - 6.8 - 9.0 - 11.9	4.2 - 5.0 - 6.8 - 9.0 - 11.9	6.0 - 7.8 - 9.9 - 11.9 - 14.1
	Sound Level (SPL)	Cooling	dB(A)	19 - 22 - 30 - 37 - 43	19 - 22 - 30 - 37 - 43	19 - 22 - 31 - 38 - 46	29 - 33 - 36 - 40 - 46
	(Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	20 - 23 - 30 - 37 - 43	20 - 23 - 30 - 37 - 43	20 - 23 - 30 - 37 - 44	29 - 33 - 38 - 43 - 48
	Sound Level (PWL)	Cooling	dB(A)	57	57	60	60
	Dimensions	H*W*D	mm	538-699-249	538-699-249	538-699-249	550-800-285
	Weight		kg	23	24	24	35
	Air Volume	Cooling	m³/min	30.3	32.2	32.2	30.4
	All Volume	Heating	m³/min	30.3	32.2	34.6	32.7
Outdoor Unit	Sound Level (SPL)	Cooling	dB(A)	50	50	52	50
•	` '	Heating	dB(A)	50	50	52	51
	Sound Level (PWL)	Cooling	dB(A)	63	63	64	64
	Operating Curre	nt (Max)	A	5.3	6.7	6.7	9.6
	Breaker Size		A	10	10	10	12
Evt	Diameter	Liquid/Gas	mm	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7
Ext. Piping	Max.Length	Out-In	m	20	20	20	20
. iping	Max.Height	Out-In	m	12	12	12	12
Guarante	ed Operating	Cooling	°C	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46
Range (C	outdoor)	Heating	°C	-15 ~ +24	-15 ~ +24	-15 ~ +24	-15 ~ +24

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or 638seshible the product yourself or product yourself and always ask a professional. The GWP of 182 is 675 in the IPCC 4th Assessment Report.

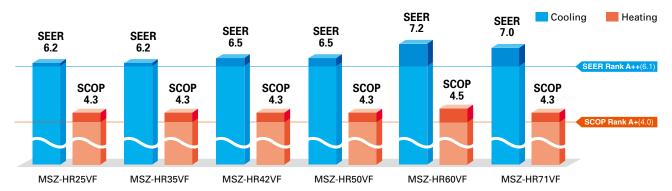
(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) SH: Super High

(*4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(*5) Please see page 51-52 for heating (warmer season) specifications.

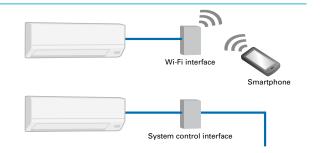
Compact, high-performance indoor and outdoor units with R32 that is low global warming potential compared with the current refrigerant R410A contribute to room comfort and to prevent global warming.

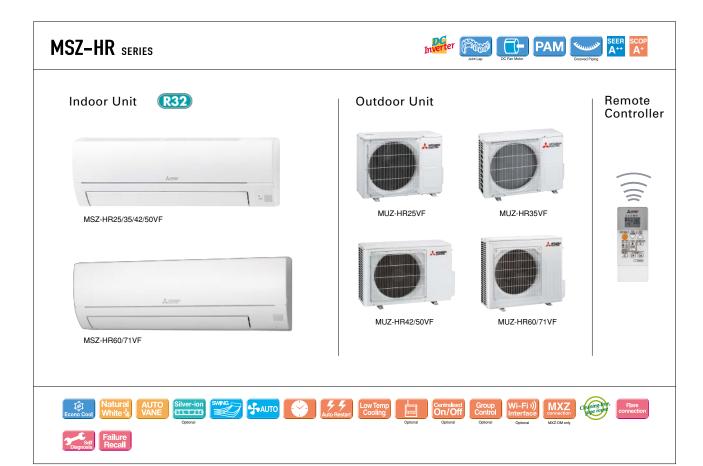

"Rank A++/A+" Energy Savings Achieved for Entire Range of Series

All models in the series, from capacity 25 to 71, have achieved the "Rank A**" for SEER and "Rank A*" for SCOP as energy-savings rating, thanks to Mitsubishi Electric's inverter technologies which are adopted to provide automatic adjustment of operation load according to need.

Simple and Friendly Design

The round front surface provides a simple and friendly impression. And the width of indoor unit is compact, making installation in smaller, tighter spaces possible.


Wi-Fi and System Control


Wi-Fi Interface (Optional)

Optional interface enabling users to control air conditioners and check operating status via devices such as personal computers, tablets and smartphones.

System Control Interface (Optional)

- •Remote on/off operation is possible by input to the connector.
- Depending on the interface used, connecting a wired remotecontrol such as the PAR-40MAA is possible.
- •Centralised control is possible when connected to M-NET.
- *Wi-Fi Interface and System Control Interface cannot be used simultaneously.

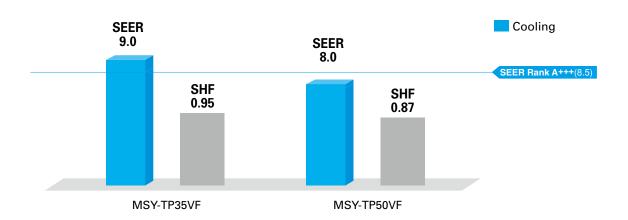
Туре						Inverter F	leat Pump		
Indoor U	nit			MSZ-HR25VF	MSZ-HR35VF	MSZ-HR42VF	MSZ-HR50VF	MSZ-HR60VF	MSZ-HR71VF
Outdoor	Unit			MUZ-HR25VF	MUZ-HR35VF	MUZ-HR42VF	MUZ-HR50VF	MUZ-HR60VF	MUZ-HR71VF
Refrigera	nt					R3	2(*1)		
Power Suprly Source Outdoor Power supply Supply Outdoor (V / Phase / Hz) 230V/Single/50Hz									
Supply	Outdoor (V / Ph	ase / Hz)				230V/Sir	igle/50Hz		
	Design load		kW	2.5	3.4	4.2	5.0	6.1	7.1
	Annual electricity	consumption (*2)	kWh/a	141	191	226	269	296	355
	SEER (*4)			6.2	6.2	6.5	6.5	7.2	7.0
Cooling		Energy efficiency class	3	A++	A++	A++	A++	A++	A++
_		Rated	kW	2.5	3.4	4.2	5.0	6.1	7.1
	Capacity	Min-Max	kW	0.5-2.9	0.9-3.4	1.1-4.6	1.3-5.0	1.7-7.1	1.8-7.3
	Total Input	Rated	kW	0.800	1.210	1.340	2.050	1.810	2.330
	Design load		kW	1.9 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)
		at reference design temperature	kW	1.9 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)
	Declared Capacity	at bivalent temperature	kW	1.9 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)
	Оараспу	at operation limit temperature	kW	1.9 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)
Heating	Back up heating	capacity	kW	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)
(Average	Annual electricity	consumption (*2)	kWh/a	614	781	928	1224	1430	1755
Season)(*5)	SCOP (*4)			4.3	4.3	4.3	4.3	4.5	4.3
		Energy efficiency class	3	A+	A+	A+	A+	A+	A+
	0	Rated	kW	3.15	3.6	4.7	5.4	6.8	8.1
	Capacity	Min-Max	kW	0.7-3.5	0.9-3.7	0.9-5.4	1.4-6.5	1.5-8.5	1.5-9.0
			kW	0.850	0.975	1.300	1.550	1.810	2.440
Operatin	g Current (Max)		А	5.0	6.7	8.5	10.0	14.1	14.1
	Input	Rated	kW	0.020	0.028	0.032	0.039	0.055	0.055
	Operating Curre	nt(Max)	A	0.2	0.27	0.3	0.36	0.5	0.5
	Dimensions	H*W*D	mm	280-838-228	280-838-228	280-838-228	280-838-228	305-923-262	305-923-262
	Weight		kg	8.5	8.5	9	9	12.5	12.5
Indoor Unit	Air Volume (Lo-Mid-	Cooling	m³/min	3.6 - 5.4 - 7.2 - 9.7	3.6 - 5.6 - 7.8 - 11.7	6.0 - 8.7 - 10.8 - 13.1	6.4 - 9.2 - 11.2 - 13.1	10.4 - 12.6 - 15.4 - 19.6	10.4 - 12.6 - 15.4 - 19.6
Onit	Hi-SHi(*3)(Dry/Wet))	Heating	m³/min	3.3 - 5.4 - 7.4 - 10.1	3.3 - 5.4 - 7.4 - 10.5	5.6 - 7.9 - 10.8 - 13.4	6.1 - 8.3 - 11.2 - 14.5	10.7 - 13.1 - 16.7 - 19.6	10.7 - 13.1 - 16.7 - 19.6
	Sound Level (SPL)	Cooling	dB(A)	21 - 30 - 37 - 43	22 - 31 - 38 - 46	24 - 34 - 39 - 45	28 - 36 - 40 - 45	33 - 38 - 44 - 50	33 - 38 - 44 - 50
	(Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	21 - 30 - 37 - 43	21 - 30 - 37 - 44	24 - 32 - 40 - 46	27 - 34 - 41 - 47	33 - 38 - 44 - 50	33 - 38 - 44 - 50
	Sound Level (PWL)	Cooling	dB(A)	57	60	60	60	65	65
	Dimensions	H*W*D	mm	538-699-249	538-699-249	550-800-285	550-800-285	714-800-285	714-800-285
	Weight		kg	23	24	34	35	40	40
	Air Volume	Cooling	m³/min	30.3	32.2	30.4	30.4	42.8	42.8
	Air volume	Heating	m³/min	30.3	32.2	32.7	32.7	48.3	48.3
Outdoor Unit	Sound Level (SPL)	Cooling	dB(A)	50	51	50	50	53	53
Cint	Sound Level (SPL)	Heating	dB(A)	50	51	51	51	57	57
	Sound Level (PWL)	Cooling	dB(A)	63	64	64	64	65	66
}	Operating Curre	ent (Max)	Α	4.8	6.4	8.2	9.6	13.6	13.6
	Breaker Size		Α	10	10	10	12	16	16
F	Diameter	Liquid/Gas	mm	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7	6.35 / 12.7
Ext. Piping	Max.Length	Out-In	m	20	20	20	20	30	30
p.ii.ig	Max.Height	Out-In	m	12	12	12	12	15	15
Guarante	eed Operating	Cooling	°C	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46
Range (C	Outdoor)	Heating	°C	-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24

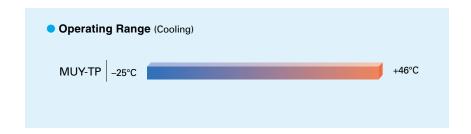
^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or 638seshible the product yourself or product yourself and always ask a professional. The GWP of 182 is 675 in the IPCC 4th Assessment Report.

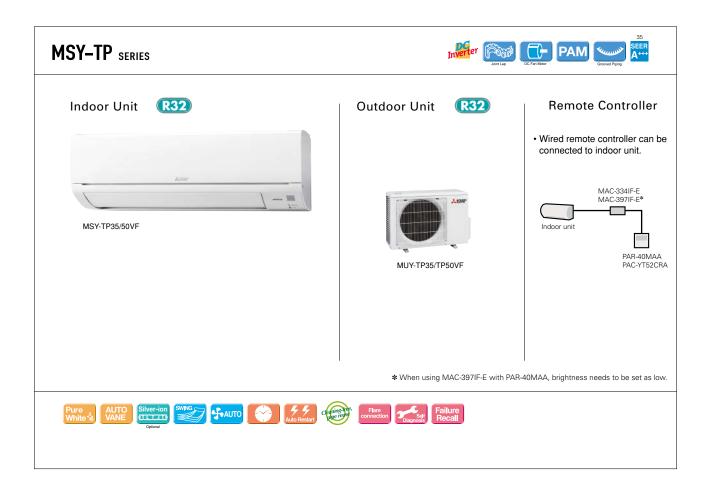
(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) SH: Super High

(*4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".


(*5) Please see page 51-52 for heating (warmer season) specifications.


Cooling only model with high-perfomance provide high SHF in various environments thanks to wide operation range.


High Energy-Saving Performance with High SHF

Wide Cooling Operating Range

As a result of an extended operating range in cooling, these models accommodate a wide range of usage environments and applications.

уре				Inverte	er Heat Pump			
loor Ur	nit			MSY-TP35VF	MSY-TP50VF			
Outdoor Unit				MUY-TP35VF	MUY-TP50VF			
rigera	nt	·			R32 ^(*1)			
ower Source				Indoor Power supply				
ply	Outdoor (V / Ph	ase / Hz)		230V / Single / 50Hz				
	Design load		kW	3.5	5.0			
	Annual electricity consumption (*2)		kWh/a	136	218			
	SEER (*4)			9.0	8.0			
		Energy efficiency class	,	A+++	A++			
		Rated	kW	3.5	5.0			
	Capacity	Min-Max	kW	1.5 - 4.0	1.5 - 5.7			
	Total Input	Rated	kW	0.760	1.450			
	Design load		kW	-	-			
		at reference design temperature		-	-			
	Declared	at bivalent temperature	kW	-	-			
	Capacity	at operation limit temperature	kW	-	-			
ating	Back up heating		kW	-	-			
erage	Annual electricity		kWh/a		-			
Season)(*5)	SCOP (*4)			-	-			
		Energy efficiency class		-	-			
		Rated	kW	-	-			
	Capacity	Min-Max	kW	_	_			
	Total Input	Rated	kW		-			
oratin	g Current (Max)	riated	A	9.6	9.6			
ciatiii	Input	Rated	kW	0.033	0.034			
	Operating Curre		A	0.4	0.4			
	Dimensions	H*W*D	mm	305-923-250	305-923-250			
	Weight	III W B	kg	12.5	12.5			
loor	Air Volume (Lo-Mid-	Cooling	m³/min	10.1 - 11.6 - 13.7 - 16.4	10.1 - 11.6 - 13.7 - 16.4			
it	Hi-SHi ^(*3) (Dry/Wet))	Heating	m³/min	10.1 - 11.0 - 13.7 - 10.4	10.1 - 11.0 - 10.7 - 10.4			
	Sound Level (SPL)	Cooling	dB(A)	31 - 36 - 40 - 45	31 - 36 - 40 - 45			
	(Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	31-30-40-45	31-30-40-43			
	Sound Level (PWL)	Cooling	dB(A)	- 60	- 60			
	Breaker Size	Cooling	A A	10	10			
	Dimensions H*W*D		mm	550-800-285				
	Weight		kg	34	550-800-285 34			
	vve/giit	Cooling	m³/min	29.3	29.3			
	Air Volume	Heating	m³/min	29.3	29.3			
tdoor it		Cooling	dB(A)	- 45	47			
••	Sound Level (SPL)	Heating	dB(A)	45 -				
	Sound Level (PWL)		dB(A)	- 58	- 61			
					-			
	Operating Curre		A	9.2	9.2			
t.	Diameter Liquid/Gas		mm	6.35/9.52	6.35/9.52			
ing	Max.Length	Out-In	m	20	20			
	Max.Height	Out-In	m	12	12			
iarante	ed Operating	Cooling	*C	-25 ~ +46	-25 ~ +46			

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

The GWP of R32 is 675 in the IPCC 4th Assessment Report.

(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) SH: Super High

(*4) SEER and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011.

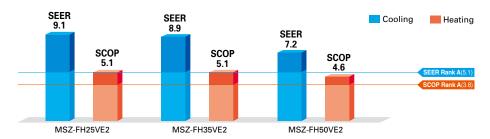
Single / Mult

MSZ-F SERIES

GOOD DESIGN AWARD 2012

MSZ-FH25/35/50VE2

The F Series is designed for optimum cooling/heating performance as well as operational comfort. Quiet, energy-saving operation is supported by some of Mitsubishi Electric's latest technologies. Advanced functions such as "3D i-see Sensor" temperature control and the Plasma Quad air purification system raise room comfort levels to new heights.



High Energy Efficiency

Power consumption has been reduced for the cooling and heating modes thanks to the incorporation of our newest inverter technologies. The high energy efficiency of the Size 25 units has obtained a rating of more than 5.0 for both seasonal coefficient of performance (SCOP) and seasonal energy efficiency rating (SEER).

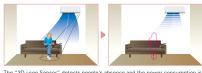
3D i-see Sensor

The FH Series is equipped with 3D i-see Sensor, an infrared-ray sensor that measures the temperature at distant positions. While moving to the left and right, eight vertically arranged sensor elements analyze the room temperature in three dimensions. This detailed analysis makes it possible to judge where people are in the room, thus allowing creation of features such as "Indirect airflow," to avoid airflow hitting people directly, and "direct airflow" to deliver airflow to where people are.

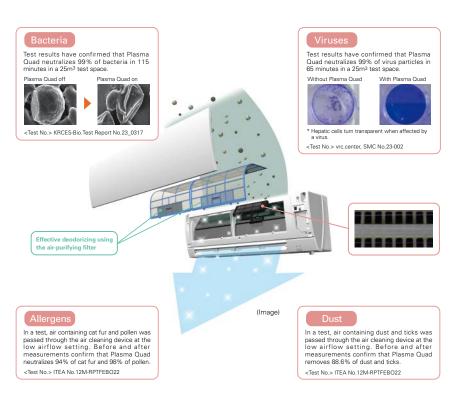
Indirect Airflow

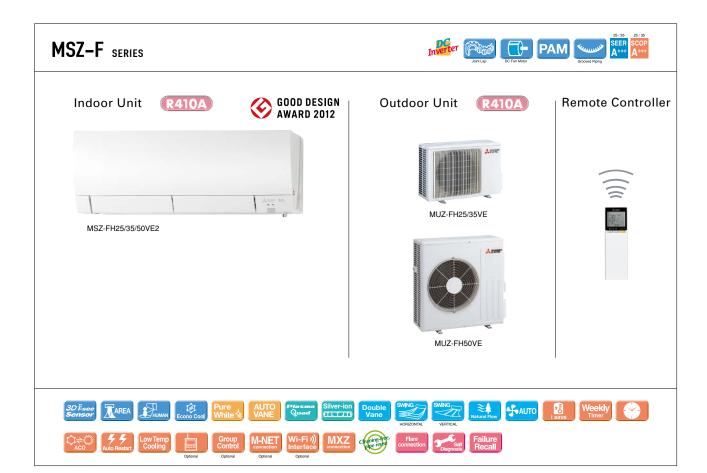
The indirect airflow setting can be used when the flow of air feels too strong or direct. For example, it can be used during cooling to avert airflow and prevent body temperature from becoming

Direct Airflow


This setting can be used to directly target airflow at people such as for immediate comfort when coming indoors on a hot (cold) day.

Absence Detection


The sensors detect whether there are people in the room. When no-one is in the room, the unit automatically switches to energy-saving mode.



The "3D i-see Sensor" detects people's absence and the power consumption is automatically reduced approximately 10% after 10 minutes and 20% after 60

Plasma Quad

Air, like water, is something we use everyday unconsciously. Yet, clean, fresh air is a vital part of creating a healthy space for humans. Achieving this healthy air is Plasma Quad, a plasmabased filter system that effectively removes four kinds of air pollutants; namely, bacteria, viruses, allergens and dust, which the air contains countless particles of.

уре					Inverter Heat Pump			
Indoor Unit				MSZ-FH25VE2 MSZ-FH35VE2		MSZ-FH50VE2		
Outdoor Unit				MUZ-FH25VE	MUZ-FH50VE			
efrigeran	t				R410A ⁽¹¹⁾	•		
Power Source				Outdoor Power supply				
	Outdoor (V/Ph	ase / Hz)		230/Single/50				
	Design load		kW	2.5	3.5	5.0		
Ī.	Annual electricity	consumption (*2)	kWh/a	96	138	244		
	SEER (*4)			9.1	8.9	7.2		
oling		Energy efficiency class	A+++		A+++	A++		
		Rated	kW	2.5	3.5	5.0		
ľ	Capacity	Min-Max	kW	1.4-3.5	0.8-4.0	1.9-6.0		
[Total Input	Rated	kW	0.485	0.820	1.380		
	Design load		kW	3.0(-10°C)	3.6(-10°C)	4.5(-10°C)		
		at reference design temperature	kW	3.0(-10°C)	3.6(-10°C)	4.5(-10°C)		
	Declared Capacity	at bivalent temperature	kW	3.0(-10°C)	3.6(-10°C)	4.5(-10°C)		
	опрасну	at operation limit temperature	kW 2.5(-15°C)		3.2(-15°C)	5.2(-15°C)		
iting	Back up heating	capacity	kW	0.0(-10°C)	0.0(-10°C)	0.0(-10°C)		
rage	Annual electricity	consumption (*2)	kWh/a	819	986	1372		
on)(*5)	SCOP (*4)			5.1	5.1	4.6		
		Energy efficiency class		A+++	A+++	A++		
	0	Rated	kW	3.2	4.0	6.0		
ľ	Capacity	Min-Max	kW	1.8-5.5	1.0-6.3	1.7-8.7		
[Total Input Rated		kW	0.580	0.800	1.480		
Operating Current (Max)		Α	9.6	9.6				
	Input	Rated	kW	0.029	0.029	0.031		
	Operating Current(Max)		A	0.4	0.4 0.4			
	Dimensions	H*W*D	mm	305(+17)-925-234 305(+17)-925-234		305(+17)-925-234		
	Weight		kg	13.5	13.5	13.5		
oor t	Air Volume (SLo-Lo-	Cooling	m³/min	3.9-4.7-6.3-8.6-11.6	3.9-4.7-6.3-8.6-11.6	6.4-7.4-8.6-10.1-12.4		
` [Mid-Hi-SHi ⁽⁺³⁾ (Dry/Wet))	Heating	m³/min	4.0-4.7-6.4-9.2-13.2	4.0-4.7-6.4-9.2-13.2	5.7-7.2-9.0-11.2-14.6		
	Sound Level (SPL)	Cooling	dB(A)	20-23-29-36-42	21-24-29-36-42	27-31-35-39-44		
	(SLo-Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	20-24-29-36-44	21-24-29-36-44	25-29-34-39-46		
	Sound Level (PWL)	vel (PWL) Cooling		58	58	60		
	Dimensions	nensions H*W*D		550-800-285	550-800-285	880-840-330		
Ľ	Weight		kg	37	37	55		
Γ	Air Volume Sound Level (SPL)	Cooling	m³/min	31.3	33.6	48.8		
door		Heating	m³/min	31.3	33.6	51.3		
		Cooling	dB(A)	46	49	51		
		Heating	dB(A)	49	50	54		
-	Sound Level (PWL) Cooling		dB(A)	60	61	64		
	Operating Current (Max)		A	9.2 9.6		13.6		
	Breaker Size		A	10	10	16		
. [Diameter Liquid/Gas		mm	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7		
t. oing	Max.Length	Out-In	m	20	20	30		
9	Max.Height			12	12	15		
Guaranteed Operating Range (Outdoor)		Cooling	*C	-10 ~ +46	-10 ~ +46	-10 ~ +46		
		Heating	°C	-15 ~ +24	-15 ~ +24	-15 ~ +24		

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or Gasssemble the product yourself or product yourself and always ask a professional. The GWP of R41Oa is 2088 in the IPCO 4th Assessment Report.

(2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

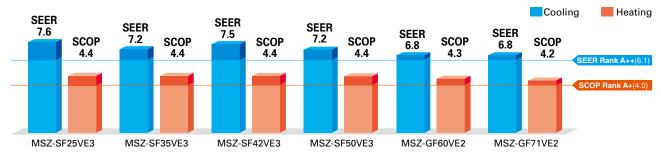
(3) SH: Super High

(4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(5) Please see page 51-52 for heating (warmer season) specifications.

MSZ-S SERIES MSZ-G SERIES

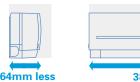
Introducing a compact and stylish indoor unit with amazingly quiet performance. Not only are neat installations in small bedrooms possible, increase energy-savings by selecting the optimal capacity required for each room.


"Rank A++/A+" Energy Savings Achieved for Entire Range of Series

All models in the series, from the low-capacity 25 to the high-capacity 71, have achieved the "Rank A*" for SEER and "Rank A*" for SCOP as energy-savings rating. For home use, such as in bedrooms and living rooms, to light commercial use, such as in offices, our air conditioners are contributing to reduced energy consumption in a wide range.

Wide Line-up

Eight different indoor units (Model 15-71) are available to meet your diversified air conditioning needs.



Compact and Stylish

(MSZ-SF15/20VA)

The stylish, square indoor unit adds a touch of class to any room interior. The compact design is 64mm thinner than our previous indoor unit with the lowest output capacity (MSZ-GE22VA).

Comparison with our previous model GE

Family Design

MSZ-SF15/20/25/35/42/50)

Models in the 25-50 class are introduced as single-split units while retaining the popular design of the SF15/20VA* as indoor units exclusively for multi-systems. From small rooms to living rooms, it is possible to coordinate residences with a unified design.

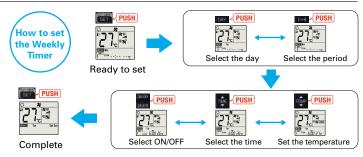
*Size may vary.

"Weekly Timer"

Easily set desired temperatures and operation start/stop times to match lifestyle patterns. Reduce wasted energy consumption by using the timer to prevent forgetting to turn off the unit and eliminate temperature setting adjustments.

■ Example Operation Pattern (Winter/Heating mode)

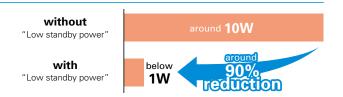
	Mon.		Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.
r.nn	ON	20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C
6:00				tion at wake-up time				
8:00	OFF							
10:00			OFF	OFF	OFF	OFF	ON 18°C	ON 18°C
12:00 14:00			Automatic		Midday is warmer, so the temperature is set lower			
15:00								,
18:00	ON	20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C
20:00			Automatically turi	Automatically raises temperature setting to match time when outside-air temperature is low				
(uurning steeping nouts)	ON	18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C
	Automatically lowers temperature at bedtime for energy-saving operation at night							
14:00 16:00 18:00		20°C	Automatically turns on, synchronized with arrival at home ON 18°C ON 18°C ON 18°C			ON 18°C	ON 20°C Automatically raises ten match time when outsid ON 18°C	


Settings

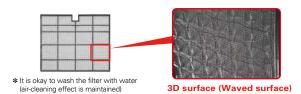
Pattern Settings: Input up to four settings for each day

Settings: •Start/Stop operation •Temperature setting *The operation mode cannot be set.

■ Easy set-up using dedicated buttons -



- Start by pushing the "SET" button and follow the instructions to set the desired patterns. Once all of the desired patterns are input, point the top end of the remote controller at the indoor unit and push the "SET" button one more time. (Push the "SET" button only after inputting all of the desired patterns into the remote controller memory. Pushing the "CANCEL button will end the set-up process without sending the operation patterns to the indoor unit)
- It takes a few seconds to transmit the Weekly Timer operation patterns to the indoor unit. Please continue to point the remote controller at the indoor unit until all data has been sent.
 When "Weekly Timer" is set, temperature can not be set 10°C.


Low Standby Power

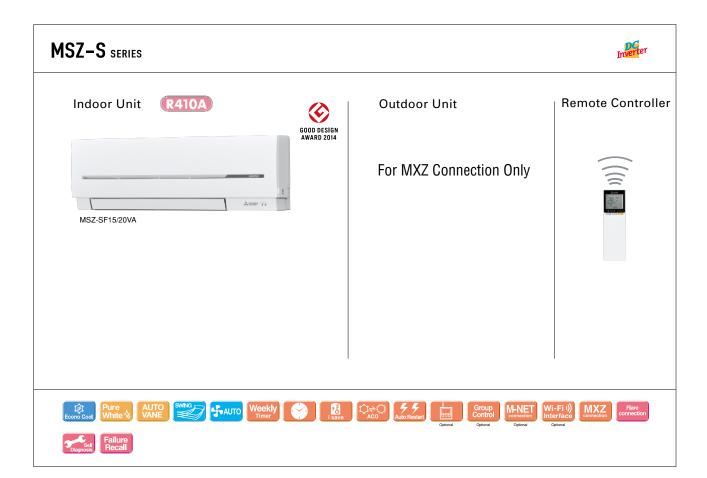
Electrical devices consume standby power even when they are not in actual use. While we obviously strive to reduce power consumption during actual use, reducing this wasted power that cannot be seen is also very important.

Air Purifying Filter (MSZ-SF25/35/42/50, MSZ-GF60/71)

This filter generates stable antibacterial and deodourising effects. The size of the three-dimensional surface has been increased as well, enlarging the filter capture area. These features give the Air Purifying Filter better dust collection performance than conventional filters. The superior air-cleaning effectiveness raises room comfort vet another level.

"i save" Mode

"i save" is a simplified setting function that recalls the preferred (preset) temperature by pressing a single button on the remote controller. Press the same button twice in repetition to immediately return to the previous temperature setting. Using this function contributes to comfortable, waste-free operation, realising the most suitable air conditioning settings and saving on power consumption when, for example, leaving the room or going to bed.


* Temperature can be preset to 10°C when heating in the "i-save" mode.

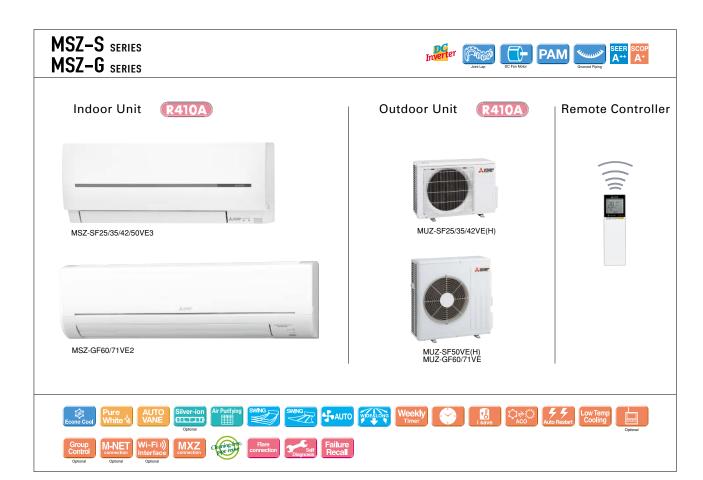
Outdoor Units for Cold Region

Single split-type outdoor units are available in both standard and heater-equipped units. An electric heater is installed in each unit to prevent freezing in cold outdoor environments

Туре						Inverter H	leat Pump		
Indoor U	nit			MSZ-SF15VA	MSZ-SF20VA	MSZ-SF25VE3	MSZ-SF25VE3	MSZ-SF35VE3	MSZ-SF35VE3
Outdoor	Unit			for MXZ o	onnection	MUZ-SF25VE	MUZ-SF25VEH	MUZ-SF35VE	MUZ-SF35VEH
Refrigera	nt					R41	OA(*1)		
Power	Source					Outdoor Po	ower supply		
Supply	Outdoor (V / Ph	ase / Hz)				230/Si	ngle/50		
	Design load		kW	-	-	2.5	2.5	3.5	3.5
	Annual electricity	consumption (*2)	kWh/a	-	-	116	116	171	171
	SEER (*4)			-	-	7.6	7.6	7.2	7.2
Cooling		Energy efficiency class		-	-	A++	A++	A++	A++
		Rated	kW	-	-	2.5	2.5	3.5	3.5
	Capacity	Min-Max	kW	-	-	0.9-3.4	0.9-3.4	1.1-3.8	1.1-3.8
	Total Input Rated		kW	-	-	0.600	0.600	1.080	1.080
	Design load		kW	-	-	2.4(-10°C)	2.4(-10°C)	2.9(-10°C)	2.9(-10°C)
		at reference design temperature	kW	-	-	2.4(-10°C)	2.4(-10°C)	2.9(-10°C)	2.9(-10°C)
	Declared Capacity	at bivalent temperature	kW	-	-	2.4(-10°C)	2.4(-10°C)	2.9(-10°C)	2.9(-10°C)
	Оараспу	at operation limit temperature	kW	-	-	2.0(-15°C)	1.6(-20°C)	2.2(-15°C)	1.6(-20°C)
Heating	Back up heating	capacity	kW	-	-	0.0(-10°C)	0.0(-10°C)	0.0(-10°C)	0.0(-10°C)
(Average	Annual electricity	consumption (*2)	kWh/a	-	-	764	790	923	948
Season)(15)	SCOP (*4)			-	-	4.4	4.3	4.4	4.3
	Energy efficiency class			-	=	A+	A+	A+	A+
	Capacity	Rated	kW	-	-	3.2	3.2	4.0	4.0
	Сараспу	Min-Max	kW	-	-	1.0-4.1	1.0-4.1	1.3-4.6	1.3-4.6
	Total Input	Rated	kW	-	-	0.780	0.780	1.030	1.030
Operatin	g Current (Max)		Α	-	-	8.4	8.4	8.5	8.5
	Input	Rated	kW	0.017	0.019	0.024	0.024	0.027	0.027
	Operating Current(Max)		Α	0.17	0.19	0.2	0.2	0.3	0.3
	Dimensions H*W*D		mm	250-760-168	250-760-168	299-798-195	299-798-195	299-798-195	299-798-195
	Weight		kg	7.7	7.7	10	10	10	10
Indoor Unit	Air Volume (SLo-Lo-	Cooling	m³/min	3.5 - 3.9 - 4.6 - 5.5 - 6.4	3.5 - 3.9 - 4.6 - 5.5 - 6.9	3.2 - 4.1 - 5.6 - 7.2 - 9.1	3.2 - 4.1 - 5.6 - 7.2 - 9.1	3.2 - 4.1 - 5.6 - 7.2 - 9.1	3.2 - 4.1 - 5.6 - 7.2 - 9.1
Oille	Mid-Hi-SHi ^(*3) (Dry/Wet))	Heating	m³/min	3.7 - 4.4 - 5.0 - 6.0 - 6.8	3.7 - 4.4 - 5.0 - 6.0 - 7.3	3.0 - 4.1 - 6.7 - 8.2 - 10.3	3.0 - 4.1 - 6.7 - 8.2 - 10.3	3.0 - 4.1 - 6.7 - 8.3 - 11.0	3.0 - 4.1 - 6.7 - 8.3 - 11.0
	Sound Level (SPL)	Cooling	dB(A)	21 - 26 - 30 - 35 - 40	21 - 26 - 30 - 35 - 42	19 ⁽¹⁶⁾ - 24 - 30 - 36 - 42	19 ^(*6) - 24 - 30 - 36 - 42	19 ^(*6) - 24 - 30 - 36 - 42	19(16) - 24 - 30 - 36 - 42
	(SLo-Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	21 - 26 - 30 - 35 - 40	21 - 26 - 30 - 35 - 42	19 ⁽¹⁶⁾ - 24 - 34 - 39 - 45	19 ⁽¹⁶⁾ - 24 - 34 - 39 - 45	19 ^(*6) - 24 - 34 - 40 - 46	19(18) - 24 - 34 - 40 - 46
	Sound Level (PWL)	Cooling	dB(A)	59	60	57	57	57	57
	Dimensions	H*W*D	mm	-	-	550-800-285	550-800-285	550-800-285	550-800-285
	Weight		kg	-	-	31	31	31	31
	Air Volume	Cooling	m³/min	-	-	31.1	31.1	35.9	35.9
Outdoor	All Volume	Heating	m³/min	-	-	30.7	30.7	35.9	35.9
Outdoor Unit	Sound Level (SPL)	Cooling	dB(A)	-	-	47	47	49	49
	Southu Level (SFL)	Heating	dB(A)	-	-	48	48	50	50
	Sound Level (PWL)	Cooling	dB(A)	-	-	58	58	62	62
	Operating Curre	nt (Max)	Α	-	-	8.2	8.2	8.2	8.2
	Breaker Size		Α	-	-	10	10	10	10
Ext.	Diameter	Liquid/Gas	mm	6.35/9.52	6.35/9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52	6.35 / 9.52
Ext. Piping	Max.Length	Out-In	m	-	-	20	20	20	20
pg	Max.Height	Out-In	m	-	-	12	12	12	12
	ed Operating	Cooling	°C	-	-	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46
Range (C	Outdoor)	Heating	°C	-	-	-15 ~ +24	-20 ~ +24	-15 ~ +24	-20 ~ +24

⁽¹⁾ Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

The GWP of R410\hat{loa} is 2086 in the IPCC 4th Assessment Report.


(2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(3) SH: Super High

(4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(5) Please see page 51-52 for heating (warmer season) specifications.

(6) For single use: only 19dB(A). For multi use (MXZ): 21dB(A).

Гуре						Inverter H	leat Pump		
ndoor Ur	nit			MSZ-SF42VE3	MSZ-SF42VE3	MSZ-SF50VE3	MSZ-SF50VE3	MSZ-GF60VE2	MSZ-GF71VE2
Outdoor I	Unit			MUZ-SF42VE	MUZ-SF42VEH	MUZ-SF50VE	MUZ-SF50VEH	MUZ-GF60VE	MUZ-GF71VE
Refrigera	nt					R41	OA ^(*1)		•
ower	Source					Outdoor Po	ower supply		
Supply	Outdoor (V / Ph	ase / Hz)				230/Si	ngle/50		
	Design load		kW	4.2	4.2	5.0	5.0	6.1	7.1
	Annual electricity	consumption (*2)	kWh/a	196	196	246	246	311	364
	SEER (*4)			7.5	7.5	7.2	7.2	6.8	6.8
Cooling		Energy efficiency class		A++	A++	A++	A++	A++	A++
		Rated	kW	4.2	4.2	5.0	5.0	6.1	7.1
	Capacity	Min-Max	kW	0.8-4.5	0.8-4.5	1.4-5.4	1.4-5.4	1.4-7.5	2.0-8.7
	Total Input	Rated	kW	1.340	1.340	1.660	1.660	1.790	2.130
	Design load		kW	3.8 (-10°C)	3.8 (-10°C)	4.2 (-10°C)	4.2 (-10°C)	4.6 (-10°C)	6.7 (-10°C)
		at reference design temperature	kW	3.8 (-10°C)	3.8 (-10°C)	4.2 (-10°C)	4.2 (-10°C)	4.6 (-10°C)	6.7 (-10°C)
	Declared	at bivalent temperature	kW	3.8 (-10°C)	3.8 (-10°C)	4.2 (-10°C)	4.2 (-10°C)	4.6 (-10°C)	6.7 (-10°C)
	Capacity	at operation limit temperature	kW	3.4 (-15°C)	2.2 (-20°C)	3.4 (-15°C)	2.3 (-20°C)	3.7 (-15°C)	5.4 (-15°C)
eating	Back up heating		kW	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)
verage	Annual electricity		kWh/a	1215	1242	1351	1380	1489	2204
eason)(*5)	SCOP (*4)			4.4	4.3	4.4	4.3	4.3	4.2
	Energy efficiency class			A+	A+	A+	A+	A+	A+
		Rated	kW	5.4	5.4	5.8	5.8	6.8	8.1
	Capacity	Min-Max	kW	1.3-6.0	1.3-6.0	1.4-7.3	1.4-7.3	2.0-9.3	2,2-9,9
	Total Input	Rated	kW	1,580	1,580	1,700	1,700	1,810	2,230
peratin	g Current (Max)		Α	9.5	9.5	12.3	12.3	14.5	16.6
	Input	Rated	kW	0.027	0.027	0.035	0.035	0.062	0.058
	Operating Current(Max)		Α	0.3	0.3	0.3	0.3	0.5	0,5
	Dimensions	H*W*D	mm	299-798-195	299-798-195	299-798-195	299-798-195	325-1100-238	325-1100-238
	Weight		kg	10	10	10	10	16	16
ndoor	Air Volume (SLo-Lo-	Cooling	m³/min	4.7 - 5.8 - 6.7 - 7.9 - 9.1	4.7 - 5.8 - 6.7 - 7.9 - 9.1	5.1 - 6.2 - 7.0 - 8.2 - 9.9	5.1 - 6.2 - 7.0 - 8.2 - 9.9	9.8-11.3-13.4-15.6-18.3	9.7-11.5-13.3-15.4-17.
nit	Mid-Hi-SHi ^(*3) (Dry/Wet))	Heating	m³/min	4.7 - 5.8 - 7.2 - 9.1 - 11.4	4.7 - 5.8 - 7.2 - 9.1 - 11.4	5.1 - 6.4 - 8.0 - 9.8 - 12.0	5.1 - 6.4 - 8.0 - 9.8 - 12.0	9.8-11.3-13.4-15.6-18.3	10.2-11.5-13.3-15.4-17
	Sound Level (SPL)	Cooling	dB(A)	26(*6) - 31 - 34 - 38 - 42	26(*6) - 31 - 34 - 38 - 42	28 ^(*7) - 33 - 36 - 40 - 45	28 ^(*7) - 33 - 36 - 40 - 45	29 - 37 -41 - 45 - 49	30 - 37 - 41 - 45 - 49
	(SLo-Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	26(*6) - 31 - 36 - 42 - 47	26(*6) - 31 - 36 - 42 - 47	28 ^(*7) - 33 - 38 - 43 - 49	28 ^(*7) - 33 - 38 - 43 - 49	29 - 37 - 41 - 45 - 49	30 - 37 - 41 - 45 - 49
	Sound Level (PWL)	Cooling	dB(A)	57	57	58	58	65	65
	Dimensions	H*W*D	mm	550-800-285	550-800-285	880-840-330	880-840-330	880-840-330	880-840-330
	Weight		kg	35	35	55	55	50	53
		Cooling	m³/min	35.2	35.2	44.6	44.6	49.2	50.1
	Air Volume	Heating	m³/min	33.6	33.6	44.6	44.6	49.2	48.2
utdoor		Cooling	dB(A)	50	50	52	52	55	55
nit	Sound Level (SPL)	Heating	dB(A)	51	51	52	52	55	55
	Sound Level (PWL)		dB(A)	63	63	65	65	65	65
	Operating Curre		Α Α	9.2	9.2	12	12	14	16.1
	Breaker Size		A	10	10	16	16	20	20
	Diameter	Liquid/Gas	mm	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7	6.35 / 12.7	6.35/15.88	9.52/15.88
xt.	Max.Length	Out-In	m	20	20	30	30	30	30
iping	Max.Height	Out-In	m	12	12	15	15	15	15
luarante		Cooling	*C	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46
auui aiitt	ed Operating Cooling lutdoor) Heating		°C	-15 ~ +24	-20 ~ +24	-15 ~ +24	-20 ~ +24	-15 ~ +24	-15 ~ +24

⁽¹⁾ Refigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming potential refigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or 6 disassemble the product yourself or for product yourself or and always ask a professional. The GWP of P41OA is 2088 in the IPCC 4th Assessment Report.

(2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

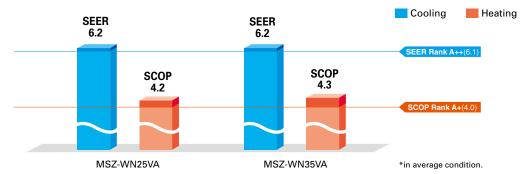
(3) SH: Super High

(4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(5) Piease see page 51-52 for heating (warmer season) specifications.

(6) For single use: only 28dB(A), For multi use (MXZ): 28dB(A).

(7) For single use: only 28dB(A), For multi use (MXZ): 30dB(A).


Advanced Inverter Control – Efficient Operation All the Time

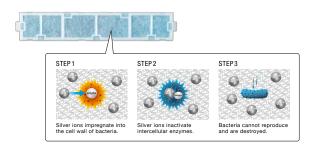
Mitsubishi Electric's cutting-edge inverter technologies are adopted to provide automatic adjustment of operation load according to need. This reduces excessive consumption of electricity, and thereby realises an Energy Rank "A+".

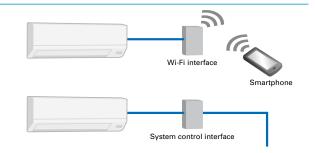
Wider Heating Operating Range

As a result of an extended operating range in heating, these models accommodate a wider range of usage environments and applications than previous models.

Wi-Fi and System Control

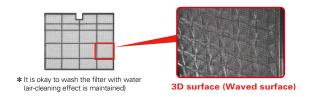
Wi-Fi Interface (Optional)

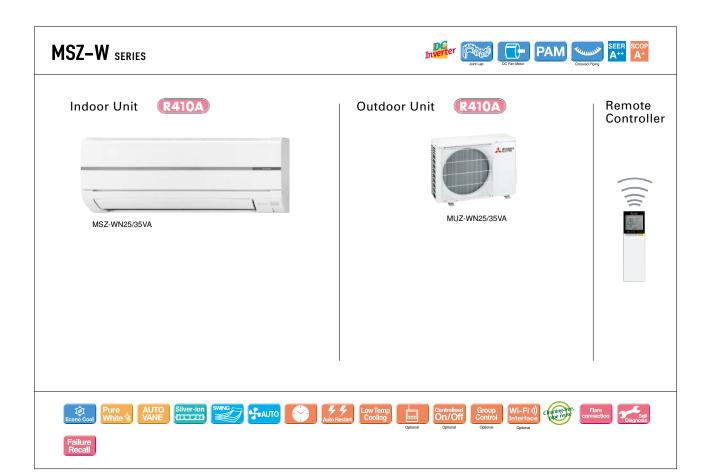

Optional interface enabling users to control air conditioners and check operating status via devices such as personal computers, tablets and smartphones.


System Control Interface (Optional)

- •Remote on/off operation is possible by input to the connector.
- •Depending on the interface used, connecting a wired remotecontrol such as the PAR-40MAA is possible.
- •Centralised control is possible when connected to M-NET.
- *Wi-Fi Interface and System Control Interface cannot be used simultaneously.

Silver-ionized Air Purifier Filter


The high performance filter is attached as standard. Captures the bacteria, pollen and other allergens in the air and neutralises them.



Air Purifying Filter

This filter generates stable antibacterial and deodourising effects. The size of the three-dimensional surface has been increased as well, enlarging the filter capture area. These features give the Air Purifying Filter better dust collection performance than conventional filters. The superior air-cleaning effectiveness raises room comfort yet another level.

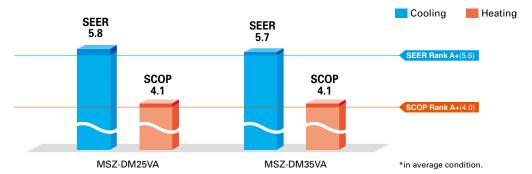
Туре				Inverter I	Heat Pump
Indoor Ur	nit			MSZ-WN25VA	MSZ-WN35VA
Outdoor I	Jnit			MUZ-WN25VA	MUZ-WN35VA
Refrigera		*			10A ^(*1)
Power	Source			Indoor Pc	ower Supply
Supply	Outdoor (V / Ph	ase / Hz)		230V/Si	ngle/50Hz
	Design load		kW	2.5	3.1
	Annual electricity consumption (*2)		kWh/a	141	173
	SEER (*4)			6.2	6.2
Cooling		Energy efficiency class	,	A++	A++
	0	Rated	kW	2.5	3.15
	Capacity	Min-Max	kW	1.3 - 3.0	1.4 - 3.5
	Total Input	Rated	kW	0.710	1.020
	Design load	*	kW	1.9(-10°C)	2.4(-10°C)
		at reference design temperature	kW	1.9(-10°C)	2.4(-10°C)
	Declared Capacity	at bivalent temperature	kW	1.9(-10°C)	2.4(-10°C)
		at operation limit temperature	kW	1.6(-15°C)	2.0(-15°C)
Heating	Back up heating	capacity	kW	0.0(-10°C)	0.0(-10°C)
(Average	Annual electricity	consumption (*2)	kWh/a	628	793
Season)(*5)	SCOP (*4)			4.2	4.3
		Energy efficiency class		A ⁺	A ⁺
	Capacity	Rated	kW	3.15	3.60
		Min-Max	kW	0.9 - 3.5	1.1 - 4.1
	Total Input	Rated	kW	0.850	0.975
Operatin	g Current (Max)	,	Α	5.8	6.5
	Input	Rated	kW	0.020	0.026
	Operating Current(Max)		Α	0.3	0.3
	Dimensions	H*W*D	mm	290-799-232	290-799-232
	Weight		kg	9	9
Indoor Unit	Air Volume (Lo-Mid-	Cooling	m³/min	3.8 - 5.5 - 7.3 - 9.5	3.8 - 5.7 - 7.8 - 11.4
Oille	Hi-SHi ^(*3) (Dry/Wet))	Heating	m³/min	3.5 - 5.5 - 7.5 - 10.0	3.5 - 5.5 - 7.5 - 10.3
	Sound Level (SPL)	Cooling	dB(A)	22 - 30 - 37 - 43	22 - 31 - 38 - 46
	(Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	23 - 30 - 37 - 43	23 - 30 - 37 - 44
	Sound Level (PWL)	Cooling	dB(A)	57	60
	Dimensions	H*W*D	mm	538-699-249	538-699-249
	Weight		kg	24	25
	Air Volume	Cooling	m³/min	31.5	31.5
0.44-	All Volume	Heating	m³/min	31.5	31.5
Outdoor Unit	Sound Level (SPL)	Cooling	dB(A)	50	52
J.III		Heating	dB(A)	50	52
			dB(A)	63	64
	Operating Curre	ent (Max)	Α	5.5	6.2
	Breaker Size		Α	10	10
Evt	Diameter	Liquid/Gas	mm	6.35/9.52	6.35/9.52
Ext. Piping	Max.Length	Out-In	m	20	20
pg	Max.Height	Out-In	m	12	12
	ed Operating	Cooling	*C	-10 ~ +46	-10 ~ +46
Range (C	outdoor)	Heating	°C	-15 ~ +24	-15 ~ +24

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or Gasssemble the product yourself or product yourself and always ask a professional. The GWP of R41Oa is 2088 in the IPCO 4th Assessment Report.

(2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(3) SH: Super High

(4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".


(5) Please see page 51-52 for heating (warmer season) specifications.

Advanced Inverter Control -Efficient Operation All the Time Inverter

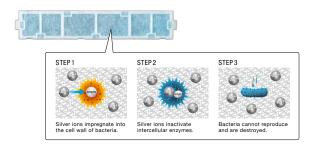
Mitsubishi Electric's cutting-edge inverter technologies are adopted to provide automatic adjustment of operation load according to need. This reduces excessive consumption of electricity, and thereby realises an Energy Rank "A+".

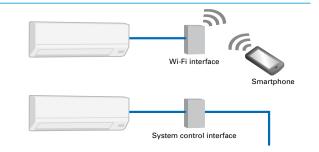
Wider Cooling Operating Range

As a result of an extended operating range in cooling, these models accommodate a wider range of usage environments and applications than previous models.

Wi-Fi and System Control

Wi-Fi Interface (Optional)

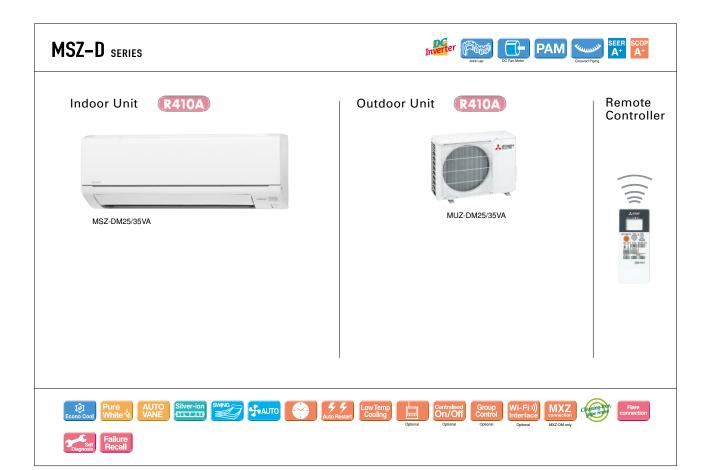

Optional interface enabling users to control air conditioners and check operating status via devices such as personal computers, tablets and smartphones.


System Control Interface (Optional)

- •Remote on/off operation is possible by input to the connector.
- •Depending on the interface used, connecting a wired remotecontrol such as the PAR-40MAA is possible.
- •Centralised control is possible when connected to M-NET.
- *Wi-Fi Interface and System Control Interface cannot be used simultaneously.

Silver-ionized Air Purifier Filter

The high performance filter is attached as standard. Captures the bacteria, pollen and other allergens in the air and neutralises them.



Compact Units

The width of both indoor and outdoor units are compact, making installation in smaller, tighter spaces possible.

Туре				Inverter l	Heat Pump		
Indoor Ur	nit			MSZ-DM25VA	MSZ-DM35VA		
Outdoor I	Jnit			MUZ-DM25VA	MUZ-DM35VA		
Refrigera	nt				10A ^(*1)		
Power	Source			Indoor Pc	ower supply		
Supply	Outdoor (V/Ph	ase / Hz)		230V/Si	ngle/50Hz		
	Design load		kW	2.5	3.1		
	Annual electricity consumption (*2)		kWh/a	149	190		
	SEER (*4)			5.8	5.7		
Cooling	Energy efficiency c			A ⁺	A ⁺		
_		Rated	kW	2.5	3.15		
	Capacity	Min-Max	kW	1.3 - 3.0	1.4 - 3.5		
	Total Input	Rated	kW	0.710	1.020		
	Design load		kW	1.9 (-10°C)	2.4 (-10°C)		
		at reference design temperature	kW	1.9 (-10°C)	2.4 (-10°C)		
	Declared Capacity	at bivalent temperature	kW	1.9 (-10°C)	2.4 (-10°C)		
	Capacity	at operation limit temperature	kW	1.9 (-10°C)	2.4 (-10°C)		
Heating	Back up heating		kW	0.0 (-10°C)	0.0 (-10°C)		
(Average	Annual electricity	consumption (*2)	kWh/a	647	809		
Season)(*5)	SCOP (*4)			4.1	4.1		
	Energy efficiency class			A ⁺	A ⁺		
		Rated	kW	3.15	3.6		
	Capacity	Min-Max	kW	0.9 - 3.5	1.1 - 4.1		
	Total Input	Total Input Rated		0.850	0.975		
Operatin	g Current (Max)	•	Α	5.8	6.5		
	Input	Rated	kW	0.020	0.024		
	Operating Current(Max)		А	0.3	0.3		
	Dimensions	H*W*D	mm	290-799-232	290-799-232		
	Weight		kg	9	9		
Indoor Unit	Air Volume (SLo-Lo-	Cooling	m³/min	3.8 - 5.5 - 7.3 - 9.5	3.8 - 5.7 - 7.8 - 10.9		
Oille	Mid-Hi-SHi ⁽⁺³⁾ (Dry/Wet))	Heating	m³/min	3.5 - 5.5 - 7.5 - 10.0	3.5 - 5.5 - 7.5 - 10.3		
	Sound Level (SPL)	Cooling	dB(A)	22 - 30 - 37 - 43	22 - 31 - 38 - 45		
	(SLo-Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	23 - 30 - 37 - 43	23 - 30 - 37 - 44		
	Sound Level (PWL)	Cooling	dB(A)	57	60		
	Dimensions	H*W*D	mm	538-699-249	538-699-249		
	Weight		kg	24	25		
	Air Volume	Cooling	m³/min	31.5	31.5		
0.44-	All Volume	Heating	m³/min	31.5	31.5		
Outdoor Unit	Sound Level (SPL)	Cooling	dB(A)	50	51		
J.111		Heating	dB(A)	50	51		
		Cooling	dB(A)	63	64		
	Operating Curre	Operating Current (Max)		5.5	6.2		
	Breaker Size		А	10	10		
Evt	Diameter	Liquid/Gas	mm	6.35/9.52	6.35/9.52		
Ext. Piping	Max.Length	Out-In	m	20	20		
pg	Max.Height	Out-In	m	12	12		
	ed Operating	Cooling	°C	-10 ~ +46	-10 ~ +46		
Range (C	outdoor)	Heating	°C	-10 ~ +24	-10 ~ +24		

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or Gasssemble the product yourself or product yourself and always ask a professional. The GWP of R41Oa is 2088 in the IPCO 4th Assessment Report.

(2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(3) SH: Super High

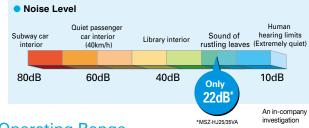
(4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(5) Please see page 51-52 for heating (warmer season) specifications.

Stylish Design with Flat Panel Front

A stylish flat panel design is employed for the front of the indoor unit. The simple look matches room aesthetics.

Advanced Inverter Control – Efficient Operation All the Time



Mitsubishi Electric's cutting-edge inverter technologies are adopted to provide automatic adjustment of operation load according to need. This reduces excessive consumption of electricity, and thereby realises an Energy Rank "A" rating for 25/35 classes and "A*" for 50/60/71 classes.

Silent Operation

Quiet, relaxing space is within reach. Operational noise is a low 22dB (25/35 classes). Operation is so silent you might even forget the air conditioner is on.

Long Piping Length

Compared to previous models, the piping length is significantly increased, further enhancing the ease and flexibility of installation.

	MSZ-HJ60/71	MSZ-HJ25/35/50	MSZ-HC
Max piping length	30m	20m	10m
Max piping height difference	15m	12m	5m

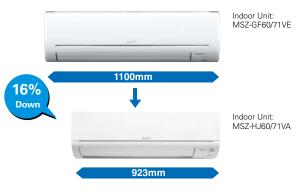
Operating Range

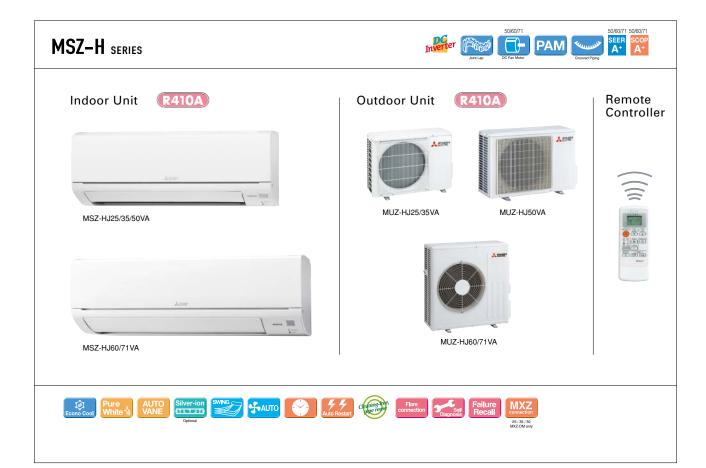
As a result of an extended operating range in cooling, these models accommodate a wider range of usage environments and applications than previous models.

Compact Units

The widths of both indoor and outdoor units are compact, making installation in smaller, tighter spaces possible.

7-m


Only 799mm width


Indoor Unit: MSZ-HJ25/35/50VA

Outdoor Unit: MUZ-HJ25/35VA

Only 699mm width

Compared to other models, width is down by 16%.

Туре					Inverter Heat Pump			
Indoor Ur	nit			MSZ-HJ25VA	MSZ-HJ35VA	MSZ-HJ50VA	MSZ-HJ60VA	MSZ-HJ71VA
Outdoor I	Jnit			MUZ-HJ25VA	MUZ-HJ35VA	MUZ-HJ50VA	MUZ-HJ60VA	MUZ-HJ71VA
Refrigera	nt					R410A ^(*1)		
Power	Source					Indoor Power supply		
Supply	Outdoor (V / Ph	ase / Hz)				230V/Single/50Hz		
	Design load		kW	2.5	3.1	5.0	6.1	7.1
	Annual electricity consumption (*2)		kWh/a	171	212	292	354	441
	SEER (*4)			5.1	5.1	6.0	6.0	5.6
Cooling		Energy efficiency class		A	A	A+	A+	A+
	Capacity	Rated	kW	2.5	3.15	5.0	6.1	7.1
	Сарасіту	Min-Max	kW	1.3 - 3.0	1.4 - 3.5	1.3 - 5.0	1.7 - 7.1	1.8 - 7.1
	Total Input	Rated	kW	0.730	1.040	2.050	1.900	2.330
	Design load		kW	1.9 (-10°C)	2.4 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)
		at reference design temperature	kW	1.9 (-10°C)	2.4 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)
	Declared Capacity	at bivalent temperature	kW	1.9 (-10°C)	2.4 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)
	Capacity	at operation limit temperature	kW	1.9 (-10°C)	2.4 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)
Heating (Average Season) ^(*5)	Back up heating	capacity	kW	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)
	Annual electricity	consumption (*2)	kWh/a	698	885	1267	1544	1854
	SCOP (*4)			3.8	3.8	4.2	4.1	4.0
		Energy efficiency class		A	Α	A+	A+	A+
	Capacity	Rated	kW	3.15	3.6	5.4	6.8	8.1
	Сарасну	Min-Max	kW	0.9 - 3.5	1.1 - 4.1	1.4 - 6.5	1.5 - 8.4	1.5 - 8.5
	Total Input	Rated	kW	0.870	0.995	1.480	1.970	2.440
Operatin	g Current (Max)		Α	5.8	6.5	9.8	12.5	12.5
	Input	Rated	kW	0.020	0.024	0.037	0.055	0.055
	Operating Current(Max)		Α	0.3	0.3	0.4	0.5	0.5
	Dimensions H*W*D		mm	290-799-232	290-799-232	290-799-232	305-923-250	305-923-250
	Weight		kg	9	9	9	13	13
Indoor Unit	Air Volume (SLo-Lo-	Cooling	m³/min	3.8 - 5.5 - 7.3 - 9.5	3.8 - 5.7 - 7.8 - 10.9	6.3 - 9.1 - 11.1 - 12.9	9.3 - 12.2 - 15.0 - 19.9	10.0 - 12.2 - 15.0 - 19.9
Oilit	Mid-Hi-SHi ^(*3) (Dry/Wet))	Heating	m³/min	3.5 - 5.5 - 7.5 - 10.0	3.5 - 5.5 - 7.5 - 10.3	6.1 - 8.3 - 11.1 - 14.3	9.4 - 12.5 - 16.0 - 19.9	10.3 - 12.7 - 16.4 - 19.9
	Sound Level (SPL)	Cooling	dB(A)	22 - 30 - 37 - 43	22 - 31 - 38 - 45	28 - 36 - 40 - 45	31 - 38 - 44 - 50	33 - 38 - 44 - 50
	(SLo-Lo-Mid-Hi-SHi ^(*3))	Heating	dB(A)	23 - 30 - 37 - 43	23 - 30 - 37 - 44	27 - 34 - 41 - 47	31 - 38 - 44 - 49	33 - 38 - 44 - 49
	Sound Level (PWL)	Cooling	dB(A)	57	60	60	65	65
	Dimensions	H*W*D	mm	538-699-249	538-699-249	550-800-285	880-840-330	880-840-330
	Weight		kg	24	25	36	55	55
	Air Volume	Cooling	m³/min	31.5	31.5	36.3	47.9	49.3
Outdoor	All Volume	Heating	m³/min	31.5	31.5	34.8	47.9	47.9
Unit	Sound Level (SPL)	Cooling	dB(A)	50	50	50	55	55
•	` '	Heating	dB(A)	50	50	51	55	55
	Sound Level (PWL)		dB(A)	63	64	64	65	66
	Operating Curre	nt (Max)	Α	5.5	6.2	9.4	12.0	12.0
	Breaker Size		Α	10	10	12	16	16
Ext.	Diameter	Liquid/Gas	mm	6.35/9.52	6.35/9.52	6.35/12.7	6.35/15.88	9.52/15.88
Piping	Max.Length	Out-In	m	20	20	20	30	30
9	Max.Height	Out-In	m	12	12	12	15	15
	ed Operating	Cooling	℃	+15 ~ +46	+15 ~ +46	+15 ~ +46	+15 ~ +46	+15 ~ +46
Range (C	Outdoor)	Heating	℃	-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24

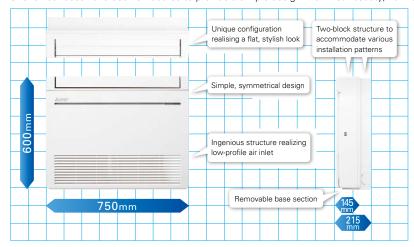
^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or Gasssemble the product yourself or product yourself and always ask a professional. The GWP of R41Oa is 2088 in the IPCO 4th Assessment Report.

(2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(3) SH: Super High

(4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(5) Please see page 51-52 for heating (warmer season) specifications.


High Capacity, Energy Savings and a Design in Harmony with Living Spaces Raise the Value of Your Room to the Next Level.

Simple, Flat Design

Uneven surfaces have been smoothed to provide a simple design with linear beauty, harmonised with all types of interiors.

R32

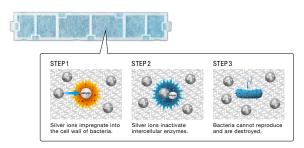
New Line-up

New models have been introduced to expand the line-up. The diverse selection enables the best solution for both customers and locations.

Capacity	2.5kW	3.5kW	5.0kW	6.0kW							
MFZ-KJ	✓	✓	✓								
	↓										
MFZ-KT	✓	✓	✓	✓							

Multi-flow Vane

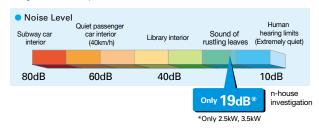
Three uniquely shaped vanes control the airflow and allow the freedom to customize comfort according to preferences.



Weekly Timer (Introduced in response to market demand)

Temperature settings and On/Off control can be managed over a period of one week using the Weekly Timer. Up to eight setting patterns per calendar day are possible.

Silver-ionized Air Purifier Filter


The high performance filter is attached as standard. Captures the bacteria, pollen and other allergens in the air and neutralises them.

Quiet Operation

The indoor unit noise level is as low as 19dB for MFZ Series, offering a peaceful inside environment.

* Single connection only

Inverter PAM SEER SCOP MFZ-KT SERIES **R32 R32** Indoor Unit **Outdoor Unit** Remote Controller **(** GOOD DESIGN AWARD 2014 25.00 SUZ-M25/35VA SUZ-M50VA Enclosed in *optional MFZ-KT MFZ-KT25/35/50/60VG SENSETE OF SERVICE OF tor terms Arts ≠ 28.5 to #+ SUZ-M60VA *optional *optional

AUTO VANE Silver-ion Air Purifying SWNG Weekly Timer Weekly I save CACO Auto Restart Cooling

Type				Inverter Heat Pump						
Indoor Un	it			MFZ-KT25VG	MFZ-KT35VG	MFZ-KT50VG	MFZ-KT60VG			
Outdoor l	Jnit			SUZ-M25VA	SUZ-M35VA	SUZ-M50VA	SUZ-M60VA			
Refrigerar	nt			R32 ^(*1)	R32 ^(*1)	R32 ^(*1)	R32 ^(*1)			
Power	Source				Outdoor po					
Supply	Outdoor(V/Phase/Hz)				230 / Sir	gle / 50				
	Design load		kW	2.5	3.5	5.0	6.1			
	Annual electricity consump	ption (*2)	kWh/a	134	185	257	343			
	SEER (*4), (*5)			6.5	6.6	6.8	6.2			
Cooling		Energy efficiency class		A++	A++	A++	A++			
	Capacity	Rated	kW	2.5	3.5	5.0	6.1			
		Min-Max	kW	1.6 - 3.2	0.9 - 3.9	1.2 - 5.6	1.7 - 6.3			
	Total Input	Rated	kW	0.62	1.06	1.55	1.84			
	Design load			2.2	2.6	4.3	4.6			
	Declared Capacity	at reference design temperature	kW	2.0 (-10°C)	2.3 (-10°C)	3.5 (-10°C)	4.1 (-10°C)			
		at bivalent temperature	kW	2.0 (-7°C)	2.3 (-7°C)	3.9 (-7°C)	4.1 (-7°C)			
		at operation limit temperature	kW	2.0 (-10°C)	2.3 (-10°C)	3.5 (-10°C)	4.1 (-10°C)			
Heating	Back up heating capacity		kW	0.2	0.3	0.8	0.5			
(Average	Annual electricity consump	ption ^(*2)	kWh/a	732	825	1423	1568			
Season)	SCOP (*4), (*5)			4.2	4.4	4.2	4.1			
		Energy efficiency class		A ⁺	A ⁺	A ⁺	A ⁺			
	Capacity	Rated	kW	3.4	4.3	6.0	7.0			
		Min-Max	kW	1.3 - 4.2	1.1 - 5.0	1.5 - 7.2	1.6 - 8.0			
	Total Input	Rated	kW	0.91	1.26	1.86	2.18			
Operatin	g Current (Max)		Α	7.0	8.7	14.0	15.4			
	Input	Rated	kW	0.020 / 0.024	0.020 / 0.024	0.037 / 0.052	0.063 / 0.059			
	Operating Current(Max)			0.20	0.20	0.45	0.55			
	Dimensions	H*W*D	mm	600-750-215	600-750-215	600-750-215	600-750-215			
Indoor	Weight		kg	14.5	14.5	14.5	15.0			
Unit	Air Volume	Cooling	m3/min	3.9 - 4.8 - 6.5 - 7.8 - 8.9	3.9 - 4.8 - 6.5 - 7.8 - 8.9	5.6 - 6.7 - 8.6 - 10.4 - 12.3	5.6 - 8.0 - 9.6 - 12.3 - 15.0			
	(SLo-Lo-Mid-Hi-SHi (*3))	Heating	m3/min	3.5 - 4.0 - 5.6 - 7.3 - 9.7	3.5 - 4.0 - 5.6 - 7.3 - 9.7	6.0 - 7.7 - 9.4 - 11.6 - 14.0	6.0 - 7.7 - 9.7 - 12.5 - 14.6			
	Sound Level (SPL)	Cooling	dB(A)	19 - 24 - 31 - 37 - 41	19 - 24 - 31 - 37 - 41	28 - 32 - 37 - 42 - 48	28 - 36 - 40 - 46 - 53			
	(SLo-Lo-Mid-Hi-SHi (*3))	Heating	dB(A)	19 - 23 - 30 - 37 - 44	19 - 23 - 30 - 37 - 44	29 - 35 - 40 - 44 - 49	29 - 35 - 41 - 47 - 51			
	Sound Level (PWL)	Cooling	dB(A)	54	54	60	65			
	Dimensions	H*W*D	mm	550-800-285	550-800-285	714-800-285	880-840-300			
	Weight		kg	30	35	41	54			
	Air Volume	Cooling	m3/min	36.3	34.3	45.8	50.1			
Outdoor		Heating	m3/min	34.6	32.7	43.7	50.1			
Unit	Sound Level (SPL)	Cooling	dB(A)	45	48	48	49			
		Heating	dB(A)	46	48	49	51			
	Sound Level (PWL)	Cooling	dB(A)	59	59	64	65			
	Operating Current(Max)		Α	7	9	14	15			
	Breaker Size	1	Α	10	10	16	16			
Ext.	Diameter	Liquid/Gas	mm	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7	6.35 / 15.88			
Piping	Max.Length	Out-In	m	20	20	30	30			
	Max.Height	Out-In	m	12	12	30	30			
	ed Operating Range	Cooling	°C	-10 ~ +46	-10 ~ +46	-15 ~ +46	-15 ~ +46			
[Outdoor]		Heating	°C	-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24			

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or Gasssemble the product yourself and always ask a professional. The GWP of R41OA is 2088 in the IPCC 4th Assessment Report.

(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) SHz Super High

(*4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(*5) SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No.206/2012.

MXZ connection Flare connection Self Self Recall

Introducing a new type of ceiling cassette for the Multi-Split Series with streamed interior dimensions and a sharp, sleek appearance.

Slim Design

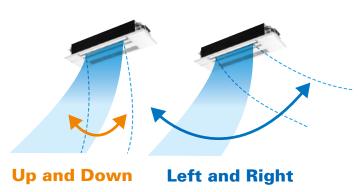
Industry leading slim body realized a simple design with linear beauty.

Ceiling Mounted

Installing the ceiling-mounted MLZ Series unit in a room creates a more spacious feel that enhances room comfort. This overhead format is also an excellent solution when lighting equipment is installed at the centre of the room and fixtures such as book shelves are mounted on wall surfaces.

Slim Body

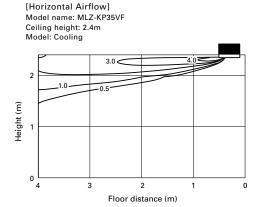
The new units are designed with a slim body (only 185mm high), ensuring easy installation even when low ceiling cavities limit installation space. The need for ceiling cavity service space is also eliminated, further reducing the dimensions required for installation.


Set Airflow According to Ceiling Height

Dual-level airflow selection is engineered to accommodate specific ceiling heights. This is a key feature for adjusting airflow effectively when it is either too strong or too weak due to being mismatched with the height of the ceiling.

	25	35	50
Standard	2.4m	2.4m	2.4m
High ceiling	2.7m	2.7m	2.7m

Auto Vane Control


Outlet vanes can be moved left and right, and up and down using the remote controller. This improved airflow control feature solves the problem of drafts.

*Only available when Econo Cool is set.

Horizontal Airflow

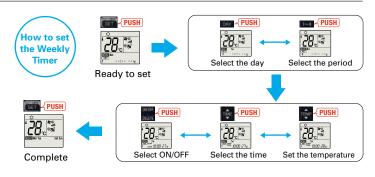
The new airflow control completely eliminates that uncomfortable drafty-feeling with the introduction of a horizontal airflow that spreads across the ceiling. The ideal airflow for offices and restaurants.

Weekly Built-in Weekly Timer Function

Easily set desired temperatures and operation ON/OFF times to match lifestyle patterns. Reduce wasted energy consumption by using the timer to prevent forgetting to turn off the unit and eliminate temperature setting adjustments.

■ Example Operation Pattern (Winter/Heating mode)

	Mo	n.	Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.	
5:00	ON 2	20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	
				Automatically change	s to high-power opera	tion at wake-up time			
8:00									
10:00									
15:00	OF	OFF OFF		OFF	OFF	OFF	ON 18°C	ON 18°C	
			Automatic	ally turned off during w	ly turned off during work hours			e is set lower	
14:00									
1P:00									
18:00	ON 2	22°C	ON 22°C	ON 22°C	ON 22°C	ON 22°C	ON 22°C	ON 22°C	
50:00			Automatically turn	ns on, synchronized wi	th arrival at home		Automatically raises temperature setting to match time when outside-air temperature is low		
55:00			,	, . ,			match time when outsid	de-air temperature is low	
(during sleeping hours)	ON 1	18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C	ON 10°C	ON 10°C	
			Automa	tically lowers tempera	ture at bedtime for en	ergy-saving operation a	it night		


Settings

Pattern Settings: Input up to four settings for each day

Settings: •Start/Stop operation •Temperature setting *The operation mode cannot be set.

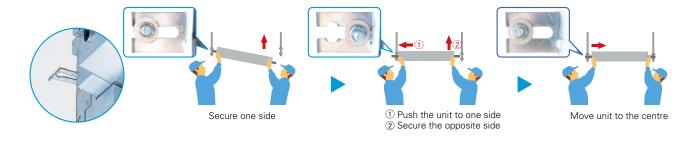
■ Easy set-up using dedicated buttons

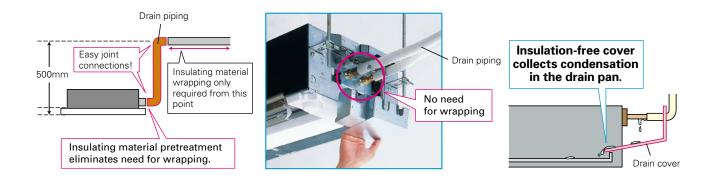
- Start by pushing the "SET" button and follow the instructions to set the desired patterns. Once all of the desired patterns are input, point the top end of the remote controller at the indoor unit and push the "SET" button one more time. (Push the "SET" button only after inputting all of the desired patterns into the remote controller memory. Pushing the "CANCEL"
- button will end the set-up process without sending the operation patterns to the indoor unit.

 It takes a few seconds to transmit the Weekly Timer operation patterns to the indoor unit. Please continue to point the remote controller at the indoor unit until all data has been sent.

Easy Installation

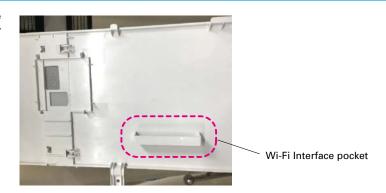
Industry leading Slim Body


Inovative size which enables to fold the refrigerant piping above the unit


Dimension: 185(H)×1102(W)×360(D)mm

Temporary hanging hook

Work efficiency has improved during installation.



Drain Piping Supporters + Drain Cover

Wi-Fi Interface Installation (Optional)

The indoor unit panel is equipped with a Wi-Fi Interface pocket, contributing to the beautiful appearance, easy installation, and maintenance.

MLZ-KP SERIES

Remote Controller

Outdoor Unit

SUZ-M25/35VA

25.0°c

MLZ-KP

*optional

MLP-444W

Indoor U	nit			MLZ-KP25VF	MLZ-KP35VF	MLZ-KP50VF
Outdoor	Unit			SUZ-M25VA	SUZ-M35VA	SUZ-M50VA
Refrigera	nt				R32 ^(*1)	·
Power	Source				Outdoor Power supply	
Supply	Outdoor (V/Ph	ase / Hz)			230V / Single / 50Hz	
	Design load		kW	2.5	3.5	5.0
	Annual electricity	consumption (*2)	kWh/a	141	175	260
	SEER (*4), (*5)			6.2	7.0	6.7
Cooling		Energy efficiency class	5	A++	A++	A++
		Rated	kW	2.5	3.5	5.0
	Capacity	Min-Max	kW	1.4 - 3.2	0.8 - 3.9	1.7 - 5.6
	Total Input	Rated	kW	0.59	0.94	1.38
	Design load		kW	2.2	2.6	4.3
		at reference design temperature	kW	2.0 (-10°C)	2.3 (-10°C)	3.8 (-10°C)
	Declared	at bivalent temperature	kW	2.0 (-7°C)	2.3 (-7°C)	3.8 (-7°C)
	Capacity	at operation limit temperature	kW	2.0 (-10°C)	2.3 (-10°C)	3.8 (-10°C)
Heating	Back up heating		kW	0.2	0.3	0.5
Average	Annual electricity		kWh/a	697	791	1397
Season)	SCOP (*4), (*5)			4.4	4.6	4.3
		Energy efficiency class	5	A+	A++	A ⁺
		Rated	kW	3.2	4.1	6.0
	Capacity	Min-Max	kW	1.4 - 4.2	1.1 - 4.9	1.7 - 7.2
	Total Input	Rated	kW	0.80	1.10	1.86
Operatir	g Current (Max)		А	7.2	8.9	13.9
•	Input	Input Rated kV		0.04	0.04	0.04
	Operating Curre	nt(Max)	Α	0.40	0.40	0.40
	Dimensions	Dimensions H*W*D		185-1102-360	185-1102-360	185-1102-360
	Weight	Weight		15.5	15.5	15.5
Indoor Unit	Air Volume (SLo-Lo-	Air Volume (SLo-Lo- Cooling		6.0-7.2-8.0-8.8	6.0-7.3-8.4-9.4	6.0-8.3-9.8-11.4
Ollit	Mid-Hi ^(*3) (Dry/Wet))	Heating	m³/min	6.0-7.0-8.2-9.2	6.0-7.7-8.8-9.9	6.0-8.8-10.3-11.8
	Sound Level (SPL)	Cooling	dB(A)	27-31-34-38	27-32-36-40	29-36-41-47
	(SLo-Lo-Mid-Hi ^(*3))	Heating	dB(A)	26-27-34-37	29-32-36-40	26-37-42-48
	Sound Level (PWL)	Cooling	dB(A)	52	53	59
	Dimensions	H*W*D	mm	24-1200-424	24-1200-424	24-1200-424
Panel	Weight		kg	3.5	3.5	3.5
	Dimensions	H*W*D	mm	550-800-285	550-800-285	550-800-285
	Weight		kg	30	35	41
	Air Values	Cooling	m³/min	36.3	34.3	45.8
	Air Volume	Heating	m³/min	34.6	32.7	43.7
Outdoor Unit		Cooling	dB(A)	45	48	48
Ollit	Sound Level (SPL)	Heating	dB(A)	46	48	49
	Sound Level (PWL)	Cooling	dB(A)	59	59	64
	Operating Curre	nt (Max)	A	6.8	8.5	13.5
	Breaker Size		А	10	10	20
_	Diameter	Liquid/Gas	mm	6.35/9.52	6.35/9.52	6.35/12.7
Ext.	Max.Length	Out-In	m	20	20	30
Piping	Max.Height	Out-In	m	12	12	30
pg						- +
	eed Operating	Cooling	°C	-10~+46	-10~+46	-15~+46

^(*1) Refirigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or Grobal seasemble the product yourself or product yourself and always ask a professional. The GWP of R41Oa is 2088 in the IPCO 4th Assessment Report.

(2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(3) SHI: Super High

(4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(5) SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No.206/2012.

Specification on Warmer/Colder Condition

Туре							Inverter Heat Pump)		
Indoor Ur	nit	•		MSZ-LI	N25VG2	MSZ-LI	N35VG2	MSZ-L	N50VG2	MSZ-LN60VG2
Outdoor I	Jnit			MUZ-LN25VG2	MUZ-LN25VGHZ2	MUZ-LN35VG2	MUZ-LN35VGHZ2	MUZ-LN50VG2	MUZ-LN50VGHZ	MUZ-LN60VG
Refrigera	nt						R32 (*3)			
	Design load			2.5	2.5	3.5	3.5	5	5.0	6.1
Cooling	Annual electricity	Annual electricity consumption (*2) kWh/a			83	129	130	205	230	285
	SEER			10.5	10.5	9.5	9.4	8.5	7.6	7.5
		Energy efficiency class		A+++	A+++	A+++	A+++	A+++	A++	A++
	Design load		kW	1.7 (2°C)	1.8 (2°C)	2.0 (2°C)	2.2 (2°C)	2.5 (2°C)	3.3 (2°C)	3.3 (2°C)
	Declared Capacity	at reference design temperature	kW	1.7 (2°C)	1.8 (2°C)	2.0 (2°C)	2.2 (2°C)	2.5 (2°C)	3.3 (2°C)	3.3 (2°C)
		at bivalent temperature	kW	1.7 (2°C)	1.8 (2°C)	2.0 (2°C)	2.2 (2°C)	2.5 (2°C)	3.3 (2°C)	3.3 (2°C)
Heating (Warmer		at operation limit temperature	kW	2.5 (-15°C)	2.3 (-25°C)	3.2 (-15°C)	3.1 (-25°C)	4.2 (-15°C)	4.7 (-25°C)	6.0 (-15°C)
Season)	Back up heating capacity kW			0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0(2°C)	0.0 (2°C)
,	Annual electricity	Annual electricity consumption (*2) kWh/a			382	431	467	602	779	779
	SCOP			6.4	6.6	6.5	6.5	5.8	5.9	5.9
		Energy efficiency class		A+++	A+++	A+++	A+++	A+++	A+++	A+++
	Design load		kW	-	4.7 (-22°C)	-	5.9 (-22°C)	-	8.8 (-22°C)	-
	Declared	at reference design temperature	kW	_	2.6 (-22°C)	_	3.4 (-22°C)	-	5.1 (-22°C)	-
	Capacity	at bivalent temperature	kW	_	3.2 (-10°C)	_	4.0 (-10°C)	_	6.0 (-10°C)	_
Heating (Colder	Capacity	at operation limit temperature	kW	_	2.3 (-25°C)	_	3.1 (-25°C)	_	4.7 (-25°C)	_
Season)	Back up heating	capacity	kW	_	2.1 (-22°C)	_	2.5 (-22°C)	_	3.7 (-22°C)	_
2220011)	Annual electricity	consumption (*2)	kWh/a	_	2425	_	3075	_	5340	_
	SCOP			_	4.0	_	4.0	_	3.4	_
		Energy efficiency class		-	A ⁺	_	A ⁺	_	A	_

Туре					Inverter Heat Pump					
Indoor Ur	nit			MSZ-FT25VG	MSZ-FT35VG	MSZ-FT50VG				
Outdoor	Unit			MUZ-FT25VGHZ	MUZ-FT35VGHZ	MUZ-FT50VGHZ				
Refrigera	nt				R32 (*3)					
	Design load		kW	2.5	3.5	5.0				
Cooling	Annual electricity	consumption (*2)	kWh/a	101	142	243				
	SEER			8.6	8.6	7.2				
		Energy efficiency class		A+++	A+++	A ⁺⁺				
	Design load		kW	1.8 (2°C)	2.2 (2°C)	2.7 (2°C)				
	r	at reference design temperature	kW	1.8 (2°C)	2.2 (2°C)	2.7 (2°C)				
		at bivalent temperature	kW	1.8 (2°C)	2.2 (2°C)	2.7 (2°C)				
Heating (Warmer		at operation limit temperature	kW	3.0 (-25°C)	3.4 (-25°C)	3.6 (-25°C)				
Season)	Back up heating capacity			0.0 (2°C)	0.0 (2°C)	0.0 (2°C)				
,	Annual electricity consumption (*2)			432	527	684				
	SCOP			5.8	5.8	5.5				
		Energy efficiency class		A+++	A+++	A+++				
	Design load		kW	4.7 (-22°C)	5.9 (-22°C)	7.4 (-22°C)				
		at reference design temperature	kW	3.1 (-22°C)	3.7 (-22°C)	4.0 (-22°C)				
	Declared Capacity	at bivalent temperature	kW	3.2 (-10°C)	4.0 (-10°C)	5.0 (-10°C)				
Heating (Colder	Capacity	at operation limit temperature	kW	3.0 (-25°C)	3.4 (-25°C)	3.6 (-25°C)				
Season)	Back up heating	capacity	kW	1.6 (-22°C)	2.2 (-22°C)	3.4 (-22°C)				
Season)	Annual electricity	consumption (*2)	kWh/a	2766	3453	4707				
	SCOP			3.5	3.5	3.3				
		Energy efficiency class		Α	A	В				

Time								Investor H	eat Pump						
Туре	.,			1407 AD45140	1407 AD001/0	1407.4	DOE! (O	1407.4			D 401 (O	1407.4	DEOL (O	1407 AD001/0/10	MOZ ADZ41/0/10
Indoor Ur					MSZ-AP20VG						MSZ-AP60VG(K)	()			
Outdoor I	Outdoor Unit				MUZ-AP20VG	MUZ-AP25VG	MUZ-AP25VGH	MUZ-AP35VG	MUZ-AP35VGH	MUZ-AP42VG	MUZ-AP42VGH	MUZ-AP50VG	MUZ-AP50VGH	MUZ-AP60VG	MUZ-AP71VG
Refrigera	Refrigerant				R32 ⁽⁵⁾										
	Design load kW			1.5	2.0	2.5	2.5	3.5	3.5	4.2	4.2	5.0	5.0	6.1	7.1
Cooling	Annual electricity consumption (*2) kWh/a		72	81	116	116	171	171	196	196	246	246	288	345	
	SEER			7.2	8.6	7.6	7.6	7.2	7.2	7.5	7.5	7.2	7.2	7.4	7.2
		Energy efficiency class		A++	A+++	A++	A++	A++	A++	A++	A++	A++	A++	A++	A++
	Design load		kW	0.9 (2°C)	1.3 (2°C)	1.3 (2°C)	1.3 (2°C)	1.6 (2°C)	1.6 (2°C)	2.1 (2°C)	2.1 (2°C)	2.3 (2°C)	2.3 (2°C)	2.5 (2°C)	3.7 (2°C)
		at reference design temperature	kW	0.9 (2°C)	1.3 (2°C)	1.3 (2°C)	1.3 (2°C)	1.6 (2°C)	1.6 (2°C)	2.1 (2°C)	2.1 (2°C)	2.3 (2°C)	2.3 (2°C)	2.5 (2°C)	3.7 (2°C)
	Declared Capacity	at bivalent temperature	kW	0.9 (2°C)	1.3 (2°C)	1.3 (2°C)	1.3 (2°C)	1.6 (2°C)	1.6 (2°C)	2.1 (2°C)	2.1 (2°C)	2.3 (2°C)	2.3 (2°C)	2.5 (2°C)	3.7 (2°C)
Heating (Warmer	Capacity	at operation limit temperature	kW	1.6 (-15°C)	2.2 (-15°C)	2.0 (-15°C)	1.6 (-20°C)	2.2 (-15°C)	1.6 (-20°C)	3.4 (-15°C)	2.2 (-20°C)	3.4 (-15°C)	2.3 (-20°C)	3.7 (-15°C)	5.4 (-15°C)
Season)	Back up heating	capacity	kW	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)
Season	Annual electricity	consumption (*2)	kWh/a	265	350	337	337	923 / 418	417	507	507	563	563	627	891
	SCOP			4.7	5.2	5.4	5.4	5.4	5.4	5.8	5.8	5.7	5.7	5.5	5.8
		Energy efficiency class		A++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++

Туре						Inverter H	leat Pump		
Indoor Ur	nit			MSZ-E	F25VG	MSZ-E	F35VG	MSZ-EF42VG	MSZ-EF50VG
Outdoor I	Jnit			MUZ-EF25VG	MUZ-EF25VGH	MUZ-EF35VG	MUZ-EF35VGH	MUZ-EF42VG	MUZ-EF50VG
Refrigera	nt					R3	32(*3)		
	Design load kW			2.5	2.5	3.5	3.5	4.2	5.0
Cooling	Annual electricity consumption (*2) kWh/a		kWh/a	96	96	139	139	186	233
0009	SEER			9.1	9.1	8.8	8.8	7.9	7.5
	Energy efficiency class		A+++	A+++	A+++	A+++	A++	A++	
	Design load kW			1.3 (2°C)	1.3 (2°C)	1.6 (2°C)	1.6 (2°C)	2.1 (2°C)	2.3 (2°C)
		at reference design temperature	kW	1.3 (2°C)	1.3 (2°C)	1.6 (2°C)	1.6 (2°C)	2.1 (2°C)	2.3 (2°C)
	Declared Capacity	at bivalent temperature	kW	1.3 (2°C)	1.3 (2°C)	1.6 (2°C)	1.6 (2°C)	2.1 (2°C)	2.3 (2°C)
Heating (Warmer	Capacity	at operation limit temperature	kW	2.0 (-15°C)	2.0 (-15°C)	2.4 (-15°C)	2.4 (-15°C)	3.4 (-15°C)	3.5 (-15°C)
(warmer Season)	Back up heatin	g capacity	kW	0.0 (2°C)					
ocason,	Annual electricity	Annual electricity consumption (*2) kWh/a		311	311	398	398	489	595
	SCOP			5.9	5.9	5.6	5.6	6.0	5.4
		Energy efficiency class		A+++	A+++	A+++	A+++	A+++	A+++

Туре					Inverter H	eat Pump	
Indoor Ur	nit			MSZ-BT20VG	MSZ-BT25VG	MSZ-BT35VG	MSZ-BT50VG
Outdoor I	Jnit			MUZ-BT20VG	MUZ-BT25VG	MUZ-BT35VG	MUZ-BT50VG
Refrigera	nt				R3	2 (*3)	
	Design load			2.0	2.5	3.5	5.0
Cooling	Annual electricity consumption (*2)			86	108	180	265
0009	SEER			8.1	8.1	6.8	6.6
		Energy efficiency class		A++	A++	A++	A++
	Design load		kW	0.9 (2°C)	1.1 (2°C)	1.3 (2°C)	2.1 (2°C)
		At reference design temperature	kW	0.9 (2°C)	1.1 (2°C)	1.3 (2°C)	2.1 (2°C)
	Declared Capacity	at bivalent temperature	kW	0.9(2°C)	1.1 (2°C)	1.3 (2°C)	2.1 (2°C)
Heating (Warmer	Сарасну	at operation limit temperature	kW	1.3 (-15°C)	1.7 (-15°C)	2.1 (-15°C)	3.4 (-15°C)
(warmer Season)	Back up heating	capacity	kW	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)
0000011,	Annual electricity	Annual electricity consumption (*2) kWh/a			268	304	543
	SCOP (*4)	SCOP (*4)		5.3	5.7	5.9	5.4
	Energy efficiency class			A+++	A+++	A+++	A+++

Туре						Inverter F	leat Pump				
Indoor Ur	nit			MSZ-HR25VF	MSZ-HR35VF	MSZ-HR42VF	MSZ-HR50VF	MSZ-HR60VF	MSZ-HR71VF		
Outdoor I	Jnit			MUZ-HR25VF	MUZ-HR35VF	MUZ-HR42VF	MUZ-HR50VF	MUZ-HR60VF	MUZ-HR71VF		
Refrigera	nt			R32 ⁽³⁾							
	Design load kW			2.5	3.4	4.2	5.0	6.1	7.1		
Cooling	Annual electricity	consumption (*2)	kWh/a	141	191	226	269	296	355		
	SEER			6.2	6.2	6.5	6.5	7.2	7.0		
		Energy efficiency class	Energy efficiency class		A++	A++	A++	A++	A++		
	Design load		kW	1.1 (2°C)	1.3 (2°C)	1.6 (2°C)	2.1 (2°C)	2.5 (2°C)	3.0 (2°C)		
		at reference design temperature	kW	1.1 (2°C)	1.3 (2°C)	1.6 (2°C)	2.1 (2°C)	2.5 (2°C)	3.0 (2°C)		
	Declared Capacity	at bivalent temperature	kW	1.1 (2°C)	1.3 (2°C)	1.6 (2°C)	2.1 (2°C)	2.5 (2°C)	3.0 (2°C)		
Heating (Warmer	Сарасну	at operation limit temperature	kW	1.9 (-10°C)	2.4 (-10°C)	2.9 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)		
Season)	Back up heating capacity kW		kW	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)		
,	Annual electricity consumption (*2) kWh/a		kWh/a	289	344	427	558	640	802		
	SCOP	SCOP			5.2	5.2	5.2	5.4	5.2		
		Energy efficiency class		A+++	A+++	A+++	A+++	A+++	A+++		

Туре						Inverter F	Inverter Heat Pump							
Indoor Ur	nit			MSZ-FI	H25VE2	MSZ-FH35VE2		MSZ-FH50VE2						
Outdoor I	Unit			MUZ-FH25VE	MUZ-FH25VEHZ	MUZ-FH35VE	MUZ-FH35VEHZ	MUZ-FH50VE	MUZ-FH50VEHZ					
Refrigera	nt					R41	OA (*1)							
	Design load kW			2.5	2.5	3.5	3.5	5.0	5.0					
Cooling	Annual electricity consumption (*2) kWh/a		96	96	138	138	244	244						
0009	SEER			9.1	9.1	8.9	8.9	7.2	7.2					
		Energy efficiency class		A+++	A+++	A+++	A+++	A++	A++					
	Design load kW			1.7 (2°C)	1.8 (2°C)	2.0 (2°C)	2.2 (2°C)	2.5 (2°C)	3.3 (2°C)					
		at reference design temperature	kW	1.7 (2°C)	1.8 (2°C)	2.0 (2°C)	2.2 (2°C)	2.5 (2°C)	3.3 (2°C)					
	Declared Capacity	at bivalent temperature	kW	1.7 (2°C)	1.8 (2°C)	2.0 (2°C)	2.2 (2°C)	2.5 (2°C)	3.3 (2°C)					
Heating (Warmer	Capacity	at operation limit temperature	kW	2.5 (-15°C)	1.7 (-25°C)	3.2 (-15°C)	2.6 (-25°C)	5.2 (-15°C)	3.8 (-25°C)					
(warmer Season)	Back up heatin	g capacity	kW	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)					
Occasorij	Annual electricity	y consumption (*2)	kWh/a	376	397	429	471	614	787					
	SCOP			6.3	6.3	6.5	4.8 / 6.5	5.7	5.9					
		Energy efficiency class		A+++	A+++	A+++	A+++	A+++	A+++					

Tomas							lassanta a 11	leat Pump			
Туре	.,			1407.0	FOEL/FO	1407.0			E40)/E0	1407.0	EFOL/FO
Indoor Ur	nit			MSZ-SF25VE3		MSZ-SF35VE3			F42VE3	MSZ-SF50VE3	
Outdoor	Unit			MUZ-SF25VE	MUZ-SF25VEH	MUZ-SF35VE	MUZ-SF35VEH	MUZ-SF42VE	MUZ-SF42VEH	MUZ-SF50VE	MUZ-SF50VEH
Refrigera	int						R410)A (*1)			
	Design load		kW	2.5	2.5	3.5	3.5	4.2	4.2	5.0	5.0
Cooling	Annual electricity	consumption (*2)	kWh/a	116	116	171	171	196	196	246	246
Cooling	SEER			7.6	7.6	7.2	7.2	7.5	7.5	7.2	7.2
		Energy efficiency class		A++	A++	A++	A++	A++	A++	A++	A++
	Design load		kW	1.3 (2°C)	1.3 (2°C)	1.6 (2°C)	1.6 (2°C)	2.1 (2°C)	2.1 (2°C)	2.3 (2°C)	2.3 (2°C)
		at reference design temperature	kW	1.3 (2°C)	1.3 (2°C)	1.6 (2°C)	1.6 (2°C)	2.1 (2°C)	2.1 (2°C)	2.3 (2°C)	2.3 (2°C)
	Declared Capacity	at bivalent temperature	kW	1.3 (2°C)	1.3 (2°C)	1.6 (2°C)	1.6 (2°C)	2.1 (2°C)	2.1 (2°C)	2.3 (2°C)	2.3 (2°C)
Heating (Warmer	Capacity	at operation limit temperature	kW	2.0 (-15°C)	1.6 (-20°C)	2.2 (-15°C)	1.6 (-20°C)	3.4 (-15°C)	2.2 (-20°C)	3.4 (-15°C)	2.3 (-20°C)
(warmer Season)	Back up heating	capacity	kW	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)
	Annual electricity	consumption (*2)	kWh/a	337	337	923 / 418	417	507	507	563	563
	SCOP			5.4	5.4	5.4	5.4	5.8	5.8	5.7	5.7
		Energy efficiency class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++

Туре					Inverter H	eat Pump	
Indoor Ur	nit			MSZ-GF60VE2	MSZ-GF71VE2	MSZ-WN25VA	MSZ-WN35VA
Outdoor	Unit			MUZ-GF60VE	MUZ-GF71VE	MUZ-WN25VA	MUZ-WN35VA
Refrigera	nt				R410)A (*1)	•
	Design load		kW	6.1	7.1	2.5	3.1
Cooling	Annual electricity consumption (*2)			311	364	141	173
0009	SEER			6.8	6.8	6.2	6.2
	Energy efficiency class			A++	A++	A++	A++
	Design load			2.5 (2°C)	3.7 (2°C)	1.1 (2°C)	1.3 (2°C)
		At reference design temperature	kW	2.5 (2°C)	3.7 (2°C)	1.1 (2°C)	1.3 (2°C)
	Declared Capacity	at bivalent temperature	kW	2.5 (2°C)	3.7 (2°C)	1.1 (2°C)	1.3 (2°C)
Heating (Warmer	Capacity	at operation limit temperature	kW	3.7 (-15°C)	5.4 (-15°C)	1.6 (-15°C)	2.0 (-15°C)
(warmer Season)	Back up heating	g capacity	kW	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)
0000011,	Annual electricity	Annual electricity consumption (*2) kW			963	304	362
	SCOP (*4)	SCOP (*4)			5.4	5.0	5.0
		Energy efficiency class		A+++	A+++	A++	A++

_											
Type							Inverter Heat Pum)			
Indoor Ur	nit			MSZ-HJ25VA	MSZ-HJ35VA	MSZ-HJ50VA	MSZ-HJ60VA	MSZ-HJ71VA	MSZ-DM25VA	MSZ-DM35VA	
Outdoor I	Jnit			MUZ-HJ25VA	MUZ-HJ35VA	MUZ-HJ50VA	MUZ-HJ60VA	MUZ-HJ71VA	MUZ-DM25VA	MUZ-DM35VA	
Refrigera	nt				R410A (**)						
	Design load		kW	2.5	3.1	5.0	6.1	7.1	2.5	3.1	
Cooling	Annual electricity consumption (*2) kWh/a		171	212	292	354	441	149	190		
0009	SEER			5.1	5.1	6.0	6.0	5.6	5.8	5.7	
		Energy efficiency class		A	Α	A ⁺	A ⁺	A ⁺	A ⁺	A ⁺	
	Design load		kW	1.1 (2°C)	1.3 (2°C)	2.1 (2°C)	2.5 (2°C)	2.9 (2°C)	1.1 (2°C)	1.3 (2°C)	
		at reference design temperature	kW	1.1 (2°C)	1.3 (2°C)	2.1 (2°C)	2.5 (2°C)	2.9 (2°C)	1.1 (2°C)	1.3 (2°C)	
	Declared Capacity	at bivalent temperature	kW	1.1 (2°C)	1.3 (2°C)	2.1 (2°C)	2.5 (2°C)	2.9 (2°C)	1.1 (2°C)	1.3 (2°C)	
Heating	Сарасну	at operation limit temperature	kW	1.9 (-10°C)	2.4 (-10°C)	3.8 (-10°C)	4.6 (-10°C)	5.4 (-10°C)	1.9 (-10°C)	2.4 (-10°C)	
(Warmer Season)	Back up heating	capacity	kW	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	0.0 (2°C)	
Coasonj	Annual electricity	consumption (*2)	kWh/a	356	426	539	674	813	325	386	
	SCOP			4.3	4.3	5.5	5.1	4.9	4.7	4.7	
		Energy efficiency class			A ⁺	A+++	A+++	A++	A++	A ⁺⁺	

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) Refrigerant leakage contributes to climate change. Refrigerant with over global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1550. This means that if 1 kg of this refrigerant thid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

SELECTION

Series line-up consists of two types of indoor units. Choose the model that best matches room conditions.

SELECT INDOOR UNIT

Select the optimal unit and capacity required to match room construction and air conditioning requirements.

Units without Remote Controller

SLZ-M15FA (Multi split series connection only)

SLZ-M25FA

SLZ-M35FA

SLZ-M50FA

SLZ-M60FA

Panel

Panel	With Signal Receiver	With 3D i-see Sensor	With Wireless Remote Controller
SLP-2FA			
SLP-2FAL	✓		
SLP-2FAE		✓	
SLP-2FALE	✓	✓	
SLP-2FALM	✓		✓
SLP-2FALME	✓	✓	✓

Units without Remote Controller

SEZ-M25DA

SEZ-M35DA

SEZ-M50DA

SEZ-M60DA

SEZ-M71DA

Units with Wireless Remote Controller

SEZ-M25DAL

SEZ-M35DAL

SEZ-M50DAL

SEZ-M60DAL

SEZ-M71DAL

There is one outdoor unit for respective indoor units.

SUZ-M50VA

R410A

SUZ-KA50/60/71VA6

^{*} To confirm compatibility with the MXZ Series multi-type system, refer to the MXZ Series page.

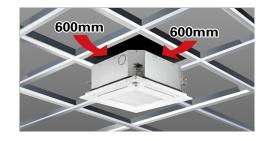
R32
R410A

SLZ-M15/25/35/50/60FA

4-way air outlets good Design AWARD 2015

Compact, lightweight ceiling cassette units with 4-way air outlets provide maximum comfort by evenly distributing airflow throughout the entire room.

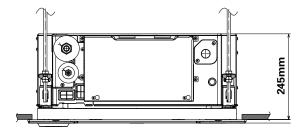
New lineup


1.5kW has been introduced for multi connection. The diverse selection enables the best solution for both customer and location.

Capacity	15	25	35	50	60
SLZ-KF		✓	✓	✓	✓
SLZ-M	✓	✓	✓	✓	✓

Beautiful design

The straight-line form introduced has resulted in a beautiful square design. Its high affinity ensures the ability to blend in seamlessly with any interior. The indoor unit is an ideal match for office or store use.


Of course, design matched 2×2 (600mm*600mm) ceiling construction specifications.

The height above ceiling of 245mm

The height above ceiling of 245mm enables fitting into narrow ceiling space. Installation is simple, even when the ceiling spaces are narrow to make the ceilings higher

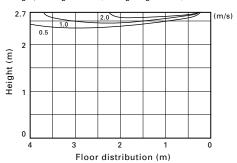
Of course, in addition to our products, replacing competitors' product is simplified too.

Energy-saving Performance*

The energy-saving performance achieved A^{++} in SEER and A^{+} in SCOP.

*In case of connecting with SUZ-KA-VA6

Quietness


Low sound level has been realized by introduction of 3D turbo fan. New SLZ can give users quieter and move comfortable room condition.

Horizontal Airflow

The new airflow control completely eliminates that uncomfortable drafty-feeling with the introduction of a horizontal airflow that spreads across the ceiling. The ideal airflow for offices and restaurants.

[Airflow distribution]* Flow angle, cooling at 20°C (ceiling height 2.7m)

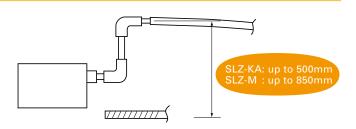
*Vane angle: Horizontal

Easy installation

Temporary hanging hook

The structure of the panel has been revised and is now equipped with a temporary hanging hook. This has improved work efficiency during temporary panel installation.

No need to remove screws


Installation is possible without removing the screws for control box simply loosen them. This eliminates the risk of losing screws.

Drain lift

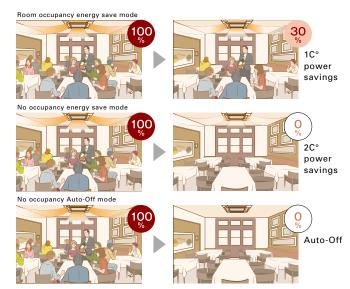
As the result of using a larger drain pan, the maximum drain lifting height has been up to 850mm, greatly enhancing construction flexibility compared to the existing model.

3D i-see Sensor for S & P SERIES

Detects number of people

Room occupancy energy-saving mode

The 3D i-see Sensor detects the number of people in the room. It then calculates the occupancy rate based on the maximum number of people in the room up to that point in time in order to save air-conditioning power. When the occupancy rate is approximately 30%, air-conditioning power equivalent to 1°C during both cooling and heating operation is saved. The temperature is controlled according to the number of people.


No occupancy energy-saving mode

When 3D i-see Sensor detects that no one is in the room, the system is switched to a pre-set power-saving mode. If the room remains unoccupied for more than 60min, air-conditioning power equivalent to 2°C during both cooling and heating operation is saved. This contributes to preventing waste in terms of heating and cooling.

No occupancy Auto-OFF mode*

When the room remains unoccupied for a pre-set period of time, the air conditioner turns off automatically, thereby providing even greater power savings. The time until operation is stopped can be set in intervals of 10min, ranging from 60 to 180 min.

*When MA Remote Controller is used to control multiple refrigerant systems, "No occupancy Auto-OFF mode" cannot be used.

*PAR-40MAA is required for each setting

Detects people's position

Direct/Indirect settings*

Some people do not like the feel of wind, some want to be warm from head to toe. People's likes and dislikes vary. With the 3D i-see Sensor, it is possible to choose to block or not block to the wind for each vane.

*PAR-40MAA or PAR-SL100A-E is required for each setting

Seasonal airflow*

<When cooling>

Saves energy while keeping a comfortable effective temperature by automatically switching between ventilation and cooling. When a pre-set temperature is reached, the air conditioning unit switches to swing fan operation to maintain the effective temperature. This clever function contributes to keeping a comfortable coolness.

<When heating>

The air conditioning unit automatically switches between circulator and heating. Wasted heat that accumulates near the ceiling is reused via circulation. When a pre-set temperature is reached the air conditioner switches from heating to circulator and blows air in the horizontal direction. It pushes down the warm air that has gathered near the ceiling to people's height, thereby providing smart heating.

*PAR-40MAA is required for each setting.

Simultaneous Multi-system*

Multiple indoor units can be installed to match the room layout, ensuring comfort and coverage of the entire room. Connection of multiple cassettes to P Series power inverter outdoor units shown below is possible.

* Only for RA410A connection

Power Inverter Combination		SLZ-M35FA	SLZ-M50FA	SLZ-M60FA
PUZ-ZM71VHA		Twin	_	_
PUHZ-ZRP71VHA2	Distribution pipe	MSDD-50TR2-E MSDD-50TR-E		
PUZ-ZM100V(Y)KA		Triple	Twin	_
PUHZ-ZRP100V(Y)KA3	Distribution pipe	MSDT-111R3-E MSDT-111R-E	MSDD-50TR2-E MSDD-50TR-E	
PUZ-ZM125V(Y)KA		Quadruple	Triple	Twin
PUHZ-ZRP125V(Y)KA3	Distribution pipe	MSDF-1111R2-E MSDF-1111R-E	MSDT-111R3-E MSDT-111R-E	MSDD-50TR2-E2 MSDD-50TR-E
PUZ-ZM140V(Y)KA		Quadruple	Triple	_
PUHZ-ZRP140V(Y)KA3	Distribution pipe	MSDF-1111R2-E MSDF-1111R-E	MSDT-111R3-E MSDT-111R-E	_

Inverter PAM **SLZ-M** SERIES Indoor Unit **Outdoor Unit R32 R32 R32 R32** GOOD DESIGN AWARD 2015 SLZ-M15/25/35/50/60FA SUZ-M25/35VA SUZ-M50VA SUZ-M60VA **Panel** Remote Controller With Signal Receiver With 3D i-see With Wireless Panel Sensor Remote Controller SLP-2FA 25.0°C SLP-2FAL SLP-2FAE SLP-2FALE SLP-2FALM *optional *optional *optional Enclosed in SLP-2FALME SLP-2FALM/SLP-2FALME

Туре						Inverter Heat Pump		
Indoor Un	nit			SLZ-M15FA	SLZ-M25FA	SLZ-M35FA	SLZ-M50FA	SLZ-M60FA
Outdoor U				for Multi connection	SUZ-M25VA	SUZ-M35VA	SUZ-M50VA	SUZ-M60VA
Refrigera				101 Marti Connection	302-WIZOVA	R32*1	302-W30VA	
Power	Source					Outdoor power supply		
Supply	Outdoor (V/Phase/H	I-)				230 / Single / 50		
Cooling	Capacity	Rated	kW	_	2.5	3.5	4.6	5.7
Cooming	Capacity	Min - Max	kW	_	1.4 - 3.2	0.7 - 3.9	1.0 - 5.2	1.5 - 6.3
	Total Input	Rated	kW		0.65	1.09	1.0 - 5.2	1.5 - 6.3
	Design Load	nated	kW	_	2.5	3.5	4.6	5.7
	Annual Electricity Co	*?	kWh/a		139	183	253	321
	SEER*3	onsumption	Kvvnja	-				
	SEER	F		-	6.3 A++	6.7 A++	6.3 A++	6.2 A++
	2 1:	Energy Efficiency Class		-				
Heating	Capacity	Rated	kW	-	3.2	4.0	5.0	6.4
Season)		Min - Max	kW	-	1.3 - 4.2	1.0 - 5.0	1.3 - 5.5	1.6 - 7.3
Design Load Declared Capacity Back Up Heating 0		Rated	kW		0.88	1.07	1.56	2.13
			kW	-	2.2	2.6	3.6	4.6
	Declared Capacity	at reference design temperature	kW	-	2.0 (-10°C)	2.3 (-10°C)	3.2 (-10°C)	4.1 (-10°C)
		at bivalent temperature	kW	-	2.0 (-7°C)	2.3 (-7°C)	3.2 (-7°C)	4.1 (-7°C)
		at operation limit temperature	kW	-	2.0 (-10°C)	2.3 (-10°C)	3.2 (-10°C)	4.1 (-10°C)
			kW	-	0.2	0.3	0.4	0.5
	Annual Electricity Co	onsumption*2	kWh/a	-	716	843	1191	1559
	SCOP*3			-	4.3	4.3	4.2	4.1
		Energy Efficiency Class		-	A+	A+	A+	A+
Operatin	g Current (max)		Α	-	7.0	8.7	13.7	15.1
ndoor	Input	Rated	kW	0.02	0.02	0.02	0.03	0.04
Unit	Operating Current (r	nax)	Α	0.17	0.20	0.24	0.32	0.43
	Dimensions <panel></panel>	H × W × D	mm	245-570-570 <10-625-625>	245-570-570 <10-625-625>	245-570-570 <10-625-625>	245-570-570 <10-625-625>	245-570-570 <10-625-62
	Weight <panel></panel>		kg	15 <3>	15 <3>	15 <3>	15 <3>	15 <3>
	Air Volume [Lo-Mid-	Hi]	m³/min	6.0 - 6.5 - 7.0	6.5 - 7.5 - 8.5	6.5 - 8.0 - 9.5	7.0 - 9.0 - 11.5	7.5 - 11.5 - 13.0
	Sound Level (SPL) [L	.o-Mid-Hi]	dB(A)	24 - 26 - 28	25 - 28 - 31	25 - 30 - 34	27 - 34 - 39	32 - 40 - 43
	Sound Level (PWL)		dB(A)	45	48	51	56	60
Outdoor	Dimensions	$H \times W \times D$	mm	-	550 - 800 - 285	550 - 800 - 285	714 - 800 - 285	880 - 840 - 330
Unit	Weight	•	kg	-	30	35	41	54
	Air Volume	Cooling	m³/min	-	36.3	34.3	45.8	50.1
		Heating	m³/min	-	34.6	32.7	43.7	50.1
	Sound Level (SPL)	Cooling	dB(A)		45	48	48	49
		Heating	dB(A)	-	46	48	49	51
	Sound Level (PWL)	Cooling	dB(A)		59	59	64	65
	Sound Level (PWL) Cooling Operating Current (max)			_	6.8	8.5	13.5	14.8
		•	A	_	10	10	20	20
	Breaker Size							
Ext.	Breaker Size	Liquid / Gas	_	_	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7	6.35 / 15.88
	Breaker Size Diameter	Liquid / Gas	mm	-	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7	6.35 / 15.88
Ext. Piping	Breaker Size Diameter Max. Length	Out-In	mm m	-	20	20	30	30
	Breaker Size Diameter	1	mm		,	,	,	,

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

SLZ-M SERIES

R410A

Panel

Panel	With Signal Receiver	With 3D i-see Sensor	With Wireless Remote Controller
SLP-2FA			
SLP-2FAL	✓		
SLP-2FAE		~	
SLP-2FALE	✓	~	
SLP-2FALM	✓		✓
SLP-2FALME	✓	✓	✓

Outdoor Unit

SUZ-KA25/35VA6

SUZ-KA50/60VA6

Remote Controller

Enclosed in SLP-2FALM/SLP-2FALME

*optional

*optional

*optional

SI 7-M15FA

Indoor Unit

Failure Recall	

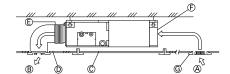
		Inverter Heat Pump		
	SLZ-M25FA	SLZ-M35FA	SLZ-M50FA	SLZ-M60FA
on	SUZ-KA25VA6	SUZ-KA35VA6	SUZ-KA50VA6	SUZ-KA60VA6
		R410A*1		
		Outdoor power supply		

mador or	IIL			SLZ-IVITSTA	SLZ-IVIZSFA	SLZ-IVIJOFA	SLZ-IVISUFA	SLZ-IVIOUTA	
Outdoor l	Jnit			for Multi connection	SUZ-KA25VA6	SUZ-KA35VA6	SUZ-KA50VA6	SUZ-KA60VA6	
Refrigera	nt					R410A*1			
Power	Source					Outdoor power supply			
Supply	Outdoor (V/Phase/H	lz)				230 / Single / 50			
Cooling	Capacity	Rated	kW	-	2.6	3.5	4.6	5.6	
		Min - Max	kW	-	1.5 - 3.2	1.4 - 3.9	2.3 - 5.2	2.3 - 6.5	
Supply (Cooling (Cool	Total Input	Rated	kW	-	0.684	0.972	1.394	1.767	
	Design Load		kW	-	2.6	3.5	4.6	5.6	
	Annual Electricity Co	onsumption*2	kWh/a	-	144	188	256	316	
	SEER*3			-	6.3	6.5	6.3	6.2	
		Energy Efficiency Class		-	A++	A++	A++	A++	
Heating	Capacity	Rated	kW	-	3.2	4.0	5.0	6.4	
(Average		Min - Max	kW	-	1.3 - 4.2	1.7 - 5.0	1.7 - 6.0	2.5 - 7.4	
Season)	Total Input	Rated	kW	-	0.886	1.108	1.558	2.278	
	Design Load	·	kW	-	2.2	2.6	3.6	4.6	
	Declared Capacity	at reference design temperature	kW	-	2.0 (-10°C)	2.3 (-10°C)	3.2 (-10°C)	4.0 (-10°C)	
		at bivalent temperature	kW	-	2.0 (-7°C)	2.3 (-7°C)	3.2 (-7°C)	4.0 (-7°C)	
		at operation limit temperature	kW	-	2.0 (-10°C)	2.3 (-10°C)	3.2 (-10°C)	4.0 (-10°C)	
	Back Up Heating Car	pacity	kW	_	0.2	0.3	0.4	0.4	
	Annual Electricity Co	onsumption*2	kWh/a	-	716	845	1172	1572	
	SCOP*3	•		-	4.3	4.3	4.3	4.1	
		Energy Efficiency Class		-	A+	A+	A+	A+	
Operatin	g Current (max)	•	Α	-	7.2	8.4	12.3	14.4	
Indoor	Input	Rated	kW	0.02	0.02	0.02	0.03	0.04	
Unit	Operating Current (r	nax)	Α	0.17	0.20	0.24	0.32	0.43	
	Dimensions <panel></panel>	H × W × D	mm	245-570-570 <10-625-625>	245-570-570 <10-625-625>	245-570-570 <10-625-625>	245-570-570 <10-625-625>	245-570-570 <10-625-625>	
	Weight <panel></panel>		kg	15 <3>	15 <3>	15 <3>	15 <3>	15 <3>	
	Air Volume [Lo-Mid-H	Hi]	m³/min	6.0 - 6.5 - 7.0	6.5 - 7.5 - 8.5	6.5 - 8.0 - 9.5	7.0 - 9.0 - 11.5	7.5 - 11.5 - 13.0	
	Sound Level (SPL) [L	o-Mid-Hi]	dB(A)	24 - 26 - 28	25 - 28 - 31	25 - 30 - 34	27 - 34 - 39	32 - 40 - 43	
	Sound Level (PWL)		dB(A)	45	48	51	56	60	
Outdoor	Dimensions	$H \times W \times D$	mm	-	550 - 800 - 285	550 - 800 - 285	880 - 840 - 330	880 - 840 - 330	
Unit	Weight		kg	-	30	35	54	50	
	Air Volume	Cooling	m³/min	-	32.6	36.3	44.6	40.9	
		Heating	m³/min	-	34.7	34.8	44.6	49.2	
	Sound Level (SPL)	Cooling	dB(A)	-	47	49	52	55	
		Heating	dB(A)	-	48	50	52	55	
	Sound Level (PWL)	Cooling	dB(A)	-	58	62	65	65	
	Operating Current (r	nax)	А		7.0	8.2	12.0	14.0	
	Breaker Size		Α		10	10	20	20	
Ext.	Diameter	Liquid / Gas	mm	-	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7	6.35 / 15.88	
Piping	Max. Length	Out-In	m	-	20	20	30	30	
	Max. Height Out-In			-	12	12	30	30	
	ed Operating Range	Cooling	°C		-10 ~ +46	-10 ~ +46	-15 ~ +46	-15 ~ +46	
[Outdoor]		Heating	°C	_	-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24	

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.



This concealed ceiling-mounted indoor unit series is compact, and fits easily into rooms with lowered ceilings. Highly reliable energy-saving performance makes it a best match choice for concealed unit installations.

Compact Ceiling-concealed Units

Only the intake-air grille and outlet vents are visible when using this ceiling-concealed indoor unit. The rest of the unit is conveniently hidden in the ceiling cavity, essentially leaving the ceiling and walls free of bulky looking devices and maintaining a high-class interior décor. The compact units require minimal space and can be installed in buildings with lowered ceilings, where exposed units were the rule in the past.

- Air inlet
- Air outlet
- © Access door
 © Ceiling surface
 © Canvas duct
- Air filter © Inlet grille

Selection of Fan Speeds and Static Pressure Levels

DC fan motor settings have been increased to accommodate more application needs. Three fan speed settings (Low, Medium and High) and four static pressure levels (5, 15, 35 and 50Pa) are now available.

SEZ-M25-71DA(L) 5/15/35/50 Pa

Four Levels Available for All Models

We've lowered the minimum static pressure level, resulting in less room noise when the optimum static pressure is selected.

	SPL (Low Fan Mode)
	SEZ-M
External Static Pressure	15 Pa
35	23dB
50	30dB
60	30dB
71	30dB

Drain Pump (Optional)

The PAC-KE07DM-E drain pump is now available as an option.

With the pump, a drain hose length of up to 550mm can be used, adding to increased installation possibilities.

SEZ-M SERIES

R32

SEZ-M25/35/50/60/71DA (Requires Wired Remote Controller) SEZ-M25/35/50/60/71DAL (Wireless Remote Controller is enclosed)

Outdoor Unit

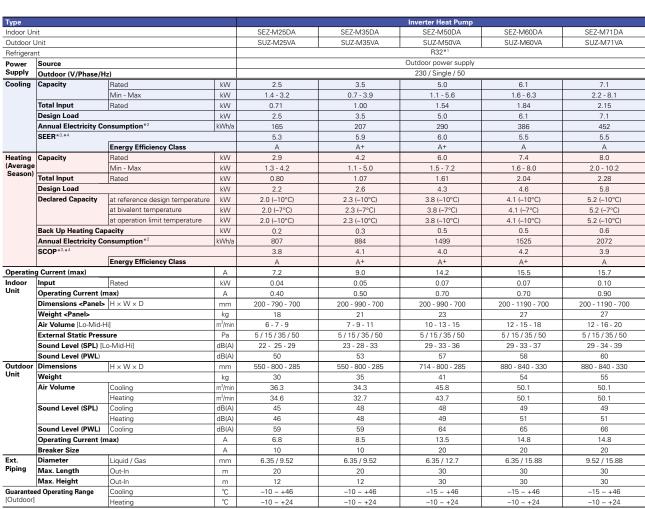
Remote Controller

Enclosed in SEZ-M DAL

*optional (for SEZ-M DA)

*optional (for SEZ-M DA)

*optional (for SEZ-M DA)



^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 SEER/SCOP are measured at ESP 35Pa.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

SEZ-M SERIES

Indoor Unit

SEZ-M25/35/50/60/71DA (Requires Wired Remote Controller)
SEZ-M25/35/50/60/71DAL (Wireless Remote Controller is enclosed)

Outdoor Unit

R410A

R410A

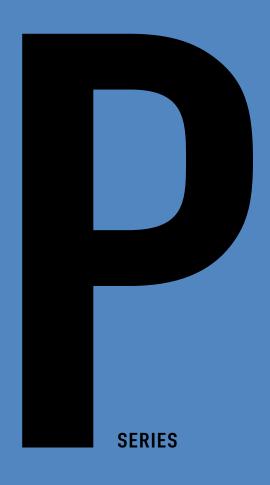
SUZ-KA50/60/71VA6

Remote Controller

*optional (for SEZ-M DA)

*optional (for SEZ-M DA)

*optional (for SEZ-M DA)



Туре						Inverter Heat Pump		
	nit			SEZ-M25DA(L)	SEZ-M35DA(L)	SEZ-M50DA(L)	SEZ-M60DA(L)	SEZ-M71DA(L
Outdoor	Unit			SUZ-KA25VA6	SUZ-KA35VA6	SUZ-KA50VA6	SUZ-KA60VA6	SUZ-KA71VA
Refrigera	nt					R410A*1		
Power	Source					Outdoor power supply		
Supply	Outdoor (V/Phase/H	i z)				230 / Single / 50		
Cooling	Capacity	Rated	kW	2.5	3.5	5.1	5.6	7.1
		Min - Max	kW	1.5 - 3.2	1.4 - 3.9	2.3 - 5.6	2.3 - 6.3	2.8 - 8.3
	Total Input	Rated	kW	0.730	1.010	1.580	1.740	2.210
door Unit butdoor Unit butdoor Unit butdoor Unit cfrigerant ower Sololing Color and Age and Ag	Design Load		kW	2.5	3.5	5.1	5.6	7.1
	Annual Electricity Co	onsumption*2	kWh/a	162	210	300	356	458
	SEER*3,*4			5.3	5.7	5.8	5.3	5.3
		Energy Efficiency Class		A A	A+	A+	A	A
leating	Capacity	Rated	kW	2.9	4.2	6.4	7.4	8.1
Average	' '	Min - Max	kW	1.3 - 4.5	1.7 - 5.0	1.7 - 7.2	2.5 - 8.0	2.6 - 10.4
Season)	Total Input	Rated	kW	0.803	1.130	1.800	2.200	2.268
	Design Load	1	kW	2.2	2.8	4.6	5.5	6.0
	Declared Capacity	at reference design temperature	kW	1.9 (–10°C)	2.5 (-10°C)	4.1 (-10°C)	4.5 (-10°C)	5.3 (-10°C)
		at bivalent temperature	kW	1.9 (-7°C)	2.5 (-7°C)	4.1 (-7°C)	4.8 (-7°C)	5.3 (-7°C)
		at operation limit temperature	kW	1.9 (–10°C)	2.5 (-10°C)	4.1 (-10°C)	4.5 (-10°C)	5.3 (-10°C)
	Back Up Heating Car		kW	0.3	0.3	0.5	1.0	0.7
	Annual Electricity Co	• •	kWh/a	808	979	1653	1878	2202
	SCOP*3,*4		KVVIIJO	3.8	4.0	3.9	4.1	3.8
		Energy Efficiency Class		A A	A+	A	A+	A
neratir	g Current (max)		A	7.4	8.7	12.7	14.7	17.0
perating door	Input	Rated	kW	0.040	0.050	0.070	0.070	0.100
Jnit	• • • • • • • • • • • • • • • • • • • •	rating Current (max)		0.4	0.5	0.7	0.7	0.9
ndoor Init	Dimensions <panel> H × W × D</panel>		A mm	200 - 790 - 700			200 - 1190 - 700	200 - 1190 - 7
	Weight <panel></panel>		kg	18	21	23	27	27
	Air Volume [Lo-Mid-H	Hil	m³/min					12 - 16 - 20
	External Static Press	-	Pa	5 / 15 / 35 / 50	5 / 15 / 35 / 50	5/15/35/50	12 - 15 - 18 5 / 15 / 35 / 50	5 / 15 / 35 / 5
	Sound Level (SPL) [L		dB(A)	22 - 25 - 29	23 - 28 - 33	29 - 33 - 36	29 - 33 - 37	29 - 34 - 39
	Sound Level (PWL)		dB(A)	50	53	57	58	60
Outdoor	Dimensions	H×W×D	mm	550 - 800 - 285	550 - 800 - 285	880 - 840 - 330	880 - 840 - 330	880 - 840 - 33
Jnit .	Weight		kg	30	35	54	50	53
	Air Volume	Cooling	m³/min	32.6	36.3	44.6	40.9	50.1
		Heating	m³/min	34.7	34.8	44.6	49.2	48.2
	Sound Level (SPL)	Cooling	dB(A)	47	49	52	55	55
		Heating	dB(A)	48	50	52	55	55
	Sound Level (PWL)	Cooling	dB(A)	58	62	65	65	69
	Operating Current (r	<u> </u>	A	7.0	8.0	12.0	14.0	16.1
	Breaker Size		A	10	10	20	20	20
	Diameter	Liquid / Gas	mm	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7	6.35 / 15.88	9.52 / 15.88
Ext.		11	m	20	20	30	30	30
	Max Length				20	30	30	30
Ext. Piping	Max. Length	Out-In		12	12	30	30	30
Piping	Max. Length Max. Height ed Operating Range	Out-In Out-In Cooling	m °C	12 -10 ~ +46	12 -10 ~ +46	30 -15 ~ +46	30 -15 ~ +46	30 -15 ~ +46

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.
*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.
*3 SEER/SCOP are measured at ESP 35Pa.
*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

SELECTION

Line-up includes a selection of eight indoor units and four series of outdoor units. Easily construct a system that best matches room air conditioning needs.



* Some indoor units cannot be used with this unit.

To confirm compatibility with the MXZ Series, refer to the MXZ Series page.

*Some indoor units cannot be used with this unit.

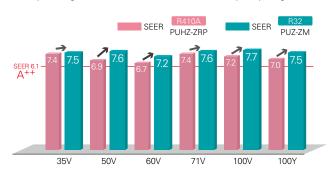
Connectable Combinations for Inverter Units

		Indoor Unit Capacity	
Outdoor Unit Capacity	Twin 50 : 50	Triple 33 : 33 : 33	Quadruple 25 : 25 : 25 : 25
71	35 × 2	_	_
100	50 × 2	_	_
125	60 × 2	_	_
140	71 × 2	50 × 3	_
200	100 × 2	60 × 3	50 × 4
250	125 × 2	71 × 3	60 × 4
Distribution Pipe	MSDD-50TR-E MSDD-50WR-E MSDD-50TR2-E2 MSDD-50WR2-E	MSDT-111R-E MSDT-111R3-E	MSDF-1111R-E MSDF-1111R2-E

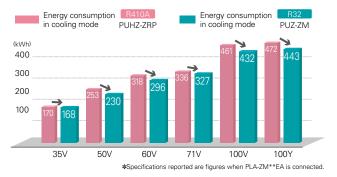
Note: The distribution pipe listed is required for simultaneous multi-systems.

Power Inverter_{SERIES}

Our Eco-conscious Power Inverter Series is designed to achieve industry-leading seasonal chergy-efficiency throught use of New R32 refrigerant and advanced technologies.

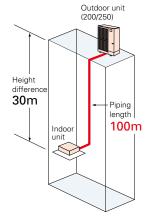


PUZ-ZM35/50VKA PUZ-ZM60/71VHA

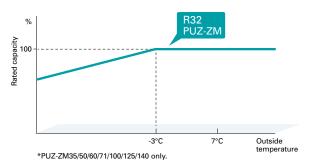

PUZ-ZM100/125/140V(Y)KA PUZ-ZM200/250YKA

Industry-leading energy efficiency

Introduction of new R32 refrigerant realises improved cooling efficiency. Rating of more than 7.0 achieved for all capacity range.

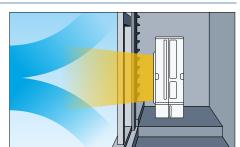

Introduction of new R32 refrigerant reduces energy consumption and realises energy savings.

Longer piping (60/71/100/125/140/200/250)


Longer piping length realised for 60, 71, 100, 125, 140, 200 and 250 classes, widely increasing installation flexibility.

	Piping	Length
	R410A PUHZ-ZRP	R32 PUZ-ZM
35/50	50m	50m
60/71	50m	55m
100/125/140	75m	100m
200/250	100m	100m

Rated heating capacity maintained down to –3°C*


Rated heating capacity maintained even when the outside temperature is down to $-3\,^{\circ}\text{C}$. Stay warm even at times of cold weather.

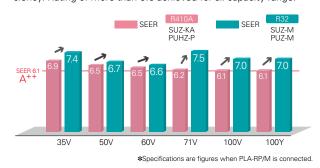
30Pa external static pressure *Option (requires PAC-SJ71FM-E)

An external static pressure of 30Pa enables the outdoor unit to be installed on balconies in high-rise building or spaces near louvers.

*Rated noise level will be higher when equipped with this option.

Standard Inverter SERIES

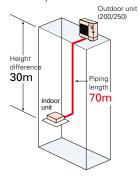
Our Standard Series become light and compact with greater energy-saving performance.


SUZ-M50VA SUZ-M60/71VA

PUZ-M100/125/140V(Y)KA

PUZ-M200/250YKA

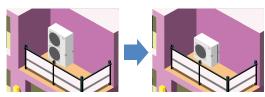
Improved energy efficiency


Introduction of new R32 refrigerant realises improved cooling efficiency. Rating of more than 6.6 achieved for all capacity range.

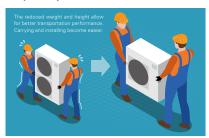
Longer piping (100/125/140/200/250)

Longer piping length realised for 100, 125, 140, 200 and 250 classes, widely increasing installation flexibility.

	Max. Piping Length									
	R410A SUZ-KA PUHZ-P	R32 SUZ-M PUZ-M								
25/35	20m	20m								
50/60/71	30m	30m								
100	50m	55m								
125/140	50m	65m								
200/250	70m	70m								


Light weight and compact size

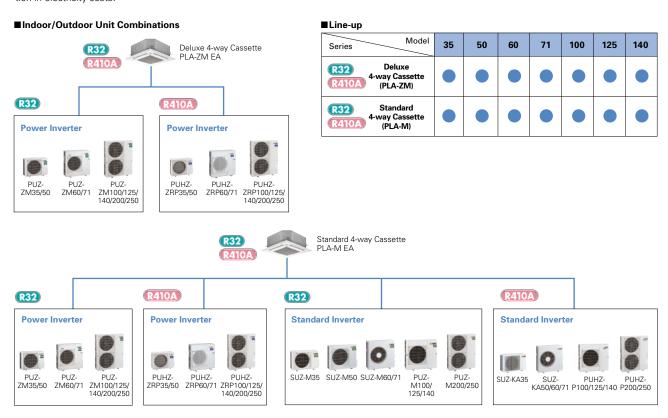
Compact design fits into narrow outdoor unit space of condominiums and offices. Light weight design facilitates easy installation.



Unobstructive, compact, and easy to hide from view

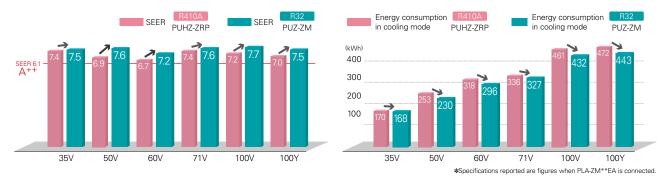
Conventional outdoor units may spoil the view. Due to its compact size, the new model can be installed in locations that previous model is not suitable.

Easy transportation and installation



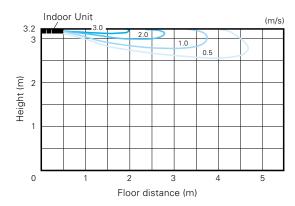
Transport efficiency improves thanks to its low height. The unit can even be transported by minivan.

Deluxe 4-way Cassette Line-up


For users seeking even further energy savings, Mitsubishi Electric now offers deluxe units (PLA-ZM) to complete the line-up of models in this series, from 35-140. Compared to the standard models (PLA-RP), deluxe models provide additional energy savings, contributing to a significant reduction in electricity costs.

Industry-leading energy efficiency

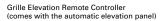
Introduction of new R32 refrigerant realises improved cooling efficiency. Rating of more than 7.0 achieved for all capacity range.


Introduction of new R32 refrigerant reduces energy consumption and realises energy savings.

Horizontal Airflow

The new airflow control removes that uncomfortable drafty feeling with the introduction of a horizontal airflow that spreads across the ceiling. The ideal airflow for offices and restaurants.

[Horizontal airflow] Model name: PLA-ZM140EA Ceiling height: 3.2m Mode: Cooling



Automatic Grille Lowering Function (PLP-6EAJ)

An automatic grille lowering function is available for easy filter maintenance. Special wired and wireless remote controllers can be used to lower the intake grille for maintenance.

Wired Remote Controller


Wireless Remote Controller

Easy Installation

Electrical box wiring

After reviewing the power supply terminal position in the electrical box, the structure was redesigned to improve connectivity. This has made previously complex wiring work easier.

■ New model (E Series)

Increased space for plumbing work

The top and bottom positions of the liquid and gas pipes have been reversed to allow the gas pipe work, which requires more effort, to be completed first. Further, through structural innovations related to the space around the pipes, the area where the spanner can be moved has been increased, thus improving liquid pipe work and enabling it to be completed smoothly.

■ Previous model (B Series)

■ New model (E Series)

Temporary hanging hook

The structure of the panel has been revised and is now equipped with a temporary hanging hook. This has improved work efficiency during panel installation.

No need to remove screws

Installation is possible without removing the screws for the corner panel and the control box, simply loosen them. This lowers the risk of losing screws.

■ Corner panel

■ Control box cover

Lightweight decorative panel

After reviewing the structure and materials, weight has been reduced approximately 20% compared to the previous model, reducing the burden of installation.

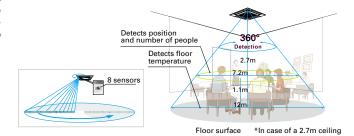
3D i-see Sensor for S & P SERIES

Detects number of people

3D i-see Sensor detects the number of people in the room and sets the air-conditioning power accordingly. This makes automatic power-saving operation possible in places where the number of people entering and exiting is large. Additionally, when the area is continuously unoccupied, the system switches to a more enhanced power-saving mode. Depending on the setting, it will save additional capacity or stop operation altogether.

Detects people's position

Once the position of a person is detected, the duct angle of the vane is automatically adjusted in that direction. Each vane can be independently set to "block wind" or "not block wind" according to taste



Detects number of people

Detects people's position

Detects number of people

Room occupancy energy-saving mode

The 3D i-see Sensor detects the number of people in the room. It then calculates the occupancy rate based on the maximum number of people in the room up to that point in time in order to save air-conditioning power. When the occupancy rate is approximately 30%, air-conditioning power equivalent to 1°C during both cooling and heating operation is saved. The temperature is controlled according to the number of people.

No occupancy energy-saving mode

When 3D i-see Sensor detects that no one is in the room, the system is switched to a pre-set power-saving mode. If the room remains unoccupied for more than 60min, air-conditioning power equivalent to 2°C during both cooling and heating operation is saved. This contributes to preventing waste in terms of heating and cooling.

No occupancy Auto-OFF mode*

When the room remains unoccupied for a pre-set period of time, the air conditioner turns off automatically, thereby providing even greater power savings. The time until operation is stopped can be set in intervals of 10min, ranging from 60 to 180 min.

* When MA Remote Controller is used to control multiple refrigerant systems, "No occupancy Auto-OFF mode" cannot be used.

Room occupancy energy save mode

1C° power savings

*PAR-40MAA is required for each setting

Detects people's position

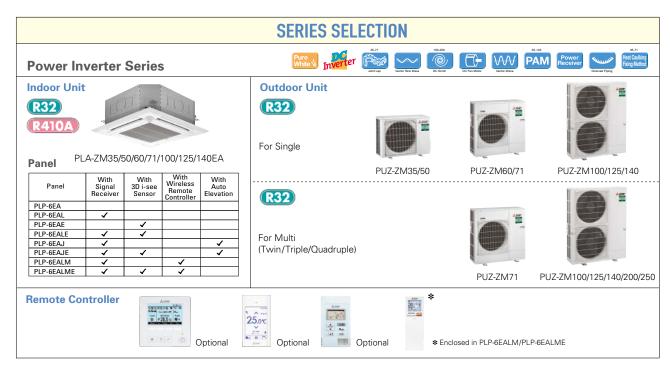
Direct/Indirect settings*

Some people do not like the feel of wind, some want to be warm from head to toe. People's likes and dislikes vary. With the 3D i-see Sensor, it is possible to choose to block or not block to the wind for each vane.

*PAR-40MAA or PAR-SL100A-E is required for each setting

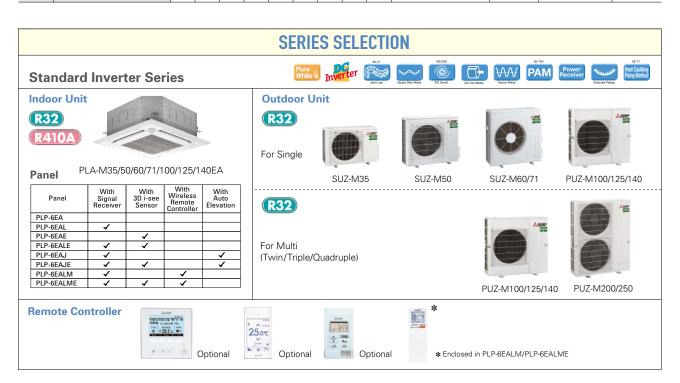
Seasonal airflow*

<When cooling>


Saves energy while keeping a comfortable effective temperature by automatically switching between ventilation and cooling. When a pre-set temperature is reached, the air conditioning unit switches to swing fan operation to maintain the effective temperature. This clever function contributes to keeping a comfortable coolness.

<When heating>

The air conditioning unit automatically switches between circulator and heating. Wasted heat that accumulates near the ceiling is reused via circulation. When a pre-set temperature is reached the air conditioner switches from heating to circulator and blows air in the horizontal direction. It pushes down the warm air that has gathered near the ceiling to people's height, thereby providing smart heating.



*PAR-40MAA is required for each setting.

PLA-ZM EA Indoor Unit Combinations Indoor unit combinations shown below are possible.

		Outdoor Unit Capacity																			
Indoor	Unit Combination	For Single									For Twin						For Triple			For Quadruple	
		35	50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power Inverter (PUHZ-ZRP)		35x1	50x1	60x1	71x1	100x1	125x1	140×1	1	1	35x2	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	_	_	-	-	-	-	-	1	N	MSDD-50TR2-E			MSDD- 50WR2-E MSDT-111R3-E			R3-E	MSDF- 1111R2-E		

PLA-M EA Indoor Unit Combinations Indoor unit combinations shown below are possible.

		Outdoor Unit Capacity																			
Indoor	Unit Combination	For Single									For Twin						For Triple			For Quadruple	
				60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Standard Inverter (SUZ & PUHZ-P)		35x1	50x1	60x1	71x1	100x1	125x1	140x1	-	-	-	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	_	_	-	-	-	-	MSDD-50TR2-E		MSDD- 50WR2-E		MSDT-111R3-E			MSDF- 1111R2-E		

				Optional	Optional	Optional	Opt	ona	Оримпи						
Гуре				Inverter Heat Pump											
ndoor Ur	nit			PLA- ZM35EA	PLA- ZM50EA	PLA- ZM60EA	PLA- ZM71EA	PLA-ZN	PLA-ZM100EA PLA-ZM125EA		/125EA	PLA-ZM140EA			
utdoor	Unit		PUZ- ZM35VKA	PUZ- ZM50VKA	PUZ- ZM60VHA	PUZ- ZM71VHA	PUZ- ZM100VKA	PUZ- ZM100YKA	PUZ- ZM125VKA	PUZ- ZM125YKA	PUZ- ZM140VKA	PUZ- ZM140YI			
efrigera	nt							R3	2*1						
ower	Source			Outdoor power supply											
upply	Outdoor (V/Phase	se/Hz)		VKA • VHA:230 / Single / 50, YKA:400 / Three / 50											
Cooling	Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.5	12.5	13.4	13.4		
		Min - Max	kW	1.6 - 4.5	2.3 - 5.6	2.7 - 6.5	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0	5.5 - 14.0	6.2 - 15.0	6.2 - 15		
	Total Input	Rated	kW	0.705	1.106	1.452	1.651	2.065	2.065	3.378	3.378	3.722	3.722		
	EER			5.10	4.52	4.20	4.30	4.60	4.60	3.70	3.70	3.60	3.60		
		EEL Rank		-	-	-	-	-	-	-	-	_	_		
	Design Load		kW	3.6	5.0	6.1	7.1	9.5	9.5	-	-	_	_		
	Annual Electricity	Consumption*2	kWh/a		230	296	327	432	443	-	-	-	-		
	SEER*4			7.5	7.6	7.2	7.6	7.7	7.5	-	-	-	-		
		Energy Efficiency Class		Α++	A++	A++	A++	A++	A++	-	-		-		
Heating	Capacity	Rated	kW	4.1	6.0	7.0	8.0	11.2	11.2	14.0	14.0	16.0	16.0		
verage		Min - Max	kW	1.6 - 5.2	2.5 - 7.3	2.8 - 8.2	3.5 - 10.2	4.5 - 14.0	4.5 - 14.0	5.0 - 16.0	5.0 - 16.0	5.7 - 18.0	5.7 - 18		
eason)	Total Input	Rated	kW	0.820	1.363	1.707	1.818	2.604	2.604	3.674	3.674	4.312	4.312		
	COP			5.00	4.40	4.10	4.40	4.30	4.30	3.81	3.81	3.71	3.71		
		EEL Rank		-	-	-				-	-	-	-		
	Design Load		kW	2.5	3.8	4.4	4.7	7.8	7.8	-	_	-	_		
	Declared Capacity	at reference design temperature	kW	2.5 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (–10°C)	-	-	-	-		
		at bivalent temperature	kW	2.5 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)	-	-	-			
		at operation limit temperature	kW	2.1 (-11°C)	3.7 (-11°C)	2.8 (-20°C)	3.5 (-20°C)	5.8 (-20°C)	5.8 (-20°C)	-	-	-	_		
	Back Up Heating C		kW	0	0	0	0	0	0	-	-	-			
	Annual Electricity	Consumption*2	kWh/a		1083	1339	1370	2277	2277	-	-	-	-		
	SCOP*4	F F(f) 01		4.7	4.9	4.6	4.8	4.8	4.8	-	-	-	-		
		Energy Efficiency Class		A++	A++	A++	A++	A++	A++	-	-	-	-		
	g Current (max)	In I	A	13.2	13.2	19.2	19.3	27.0	8.5	27.0	10.0	28.7	13.7		
door nit	Input	Rated	kW	0.03	0.03	0.03	0.05 0.34	0.07 0.47	0.07 0.47	0.08	0.08	0.10	0.10		
III C	Operating Current		A		0.22	0.22	0.34	0.47		0.52 0 - 840 <40 - 95		0.66	0.66		
	Dimensions <panel> Weight <panel></panel></panel>	IH × W × D	ka	258 - 840 - 840 <40 - 950 - 950> 21 <5>			24 <5>	26 <5>	298 - 84	0 - 840 <40 - 95 26 <5>	26 < 5>	26 <5>	26 <5>		
	Air Volume [Lo-Mi2	N 4:4 LE1	m³/min	11 10 15 10	21 <5>	10 14 10 10	17-19-21-23	20 < 5>	20 < 5>	20 < 5>	20 < 0 >	24-26-29-32	20 < 32		
	Sound Level (SPL)		dB(A)				28-30-33-36		31-34-37-40		33-36-39-41				
	Sound Level (SPL)		dB(A)	51	54	54	57	61	61	62	62	65	65		
utdoor		H×W×D	mm	630 - 80			- 330 (+25)	01	01		0 - 330 (+40)	00	05		
nit	Weight	III V V X D	kg	46	46	70	70	116	123	1,338 - 1,05	125	118	131		
	Air Volume	Cooling	m³/min	45	45	55	55	110	110	120	120	120	120		
	All Volume	Heating	m³/min	45	45	55	55	110	110	120	120	120	120		
	Sound Level (SPL)	Cooling	dB(A)	44	45	47	47	49	49	50	50	50	50		
	Country Level (OF L)	Heating	dB(A)	46	46	49	49	51	51	52	52	52	52		
	Sound Level (PWL)		dB(A)	65	65	67	67	69	69	70	70	70	70		
	Operating Current		A	13.0	13.0	19.0	19.0	26.5	8.0	26.5	9.5	28.0	13.0		
	Breaker Size		A	16	16	25	25	32	16	32	16	40	16		
	Diameter	Liquid / Gas	mm	6.35		9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.		
	Max. Length	Out-In	m	50	50	55	55	100	100	100	100	100	100		
	Max. Height	Out-In	m	30	30	30	30	30	30	30	30	30	30		
	ed Operating Range	Cooling*3	°C	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +4		
Outdoorl		Heating	°C	-11 ~ +21	-11 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +2		

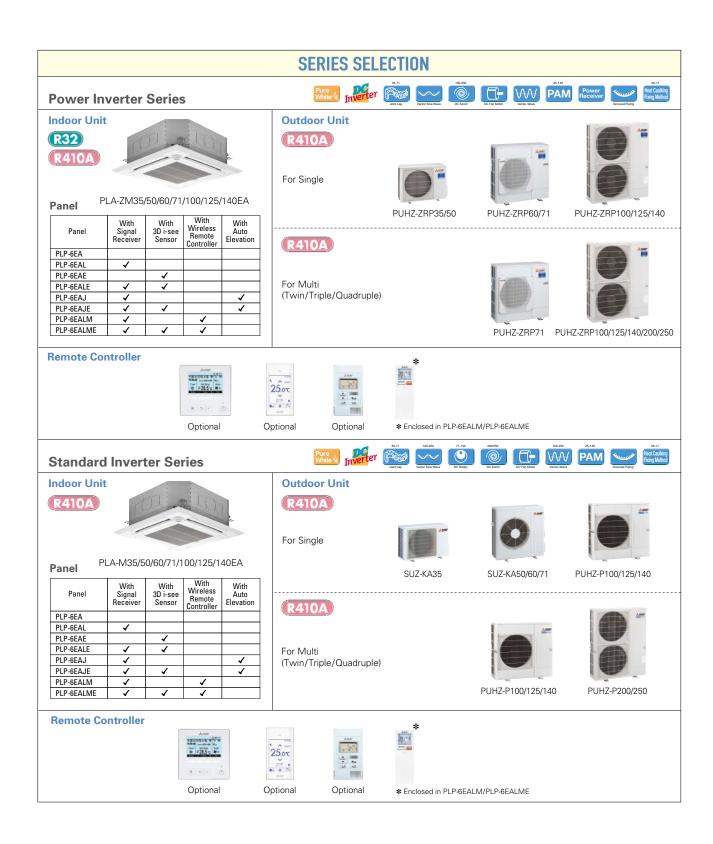
^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 Optional air protection guide is required where ambient temperature is lower than -5°C.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

уре								Inverter F	leat Pump						
ndoor Ur	nit			PLA- M35EA	PLA- M50EA	PLA- M60EA	PLA- M71EA	PLA-M100EA		PLA-M125EA		PLA-M140EA			
Outdoor Unit				SUZ- M35VA	SUZ- M50VA	SUZ- M60VA	SUZ- M71VA	PUZ- M100VKA	PUZ- M100YKA	PUZ- M125VKA	PUZ- M125YKA	PUZ- M140VKA	PUZ- M140YKA		
Refrigerant					R32*1										
ower	Source			Outdoor power supply											
	Outdoor (V/Phase	/Hz)													
Cooling	Capacity	Rated	kW	3.6	5.5	6.1	7.1	9.5	0, YKA:400 / Th	12.1	12.1	13.4	13.4		
	Capacity	Min - Max	kW	0.8 - 3.9	1.2 - 5.6	1.6 - 6.3	2.2 - 8.1	4.0 - 10.6	4.0 - 10.6	5.8 - 13.0	5.8 - 13.0	5.8 - 14.1	5.8 - 14.		
	Total Input	Rated	kW	0.90	1.61	1.84	1.91	2.71	2.71	4.01	4.01	4.96	4.96		
	EER	Inateu	NVV.	4.00	3.40	3.30	3.70	3.50	3.50	3.01	3.01	2.70	2.70		
	LLIN	EEL Rank		4.00	3.40	3.30	3.70	- 3.30	3.30	3.01	3.01	2.70			
	Design Load	EEL NAIIK	kW	3.6	5.5	6.1	7.1	9.5	9.5	12.1	12.1	13.4	13.4		
	Annual Electricity	Consumption*2	kWh/a	170	285	320	331	474	474	12.1	12.1	-	15.4		
	SEER*4	CONSUMPLION	LVVII/a	7.4	6.7	6.6	7.5	7.0	7.0		_	_			
	JLLN	Energy Efficiency Class		Λ++	Δ++	δ.6 A++	7.5 A++	7.0 A++	7.0 A++	_	_	_			
eating	Capacity	Rated	kW	4.1	6.0	7.0	8.0	11.2	11.2	13.5	13.5	15.0	15.0		
Average	Capacity	Min - Max	kW	1.0 - 5.0	1.5 - 7.2	1.6 - 8.0	2.0 - 10.2	2.8 - 12.5	2.8 - 12.5	4.1 - 15.0	4.1 - 15.0	4.2 - 15.8	4.2 - 15.		
eason)	Total Input	Rated	kW	0.97	1.73	1.84	2.21	3.01	3.01	3.63	3.63	4.39	4.39		
ocusoii,	COP	Inateu	NVV.	4.20	3.46	3.80	3.61	3.71	3.71	3.71	3.71	3.41	3.41		
		EEL Rank		4.20	3.40	3.00	- 3.01	5.71	- 3.71	5.71	3.71	- 5.41	- 0.41		
	Design Load	EEL NAIIK	kW	2.6	4.3	4.6	5.8	8.0	8.0	8.5	8.5	9.4	9.4		
		at reference design temperature	kW	2.3 (-10°C)	3.8 (–10°C)	4.1 (–10°C)	5.2 (-10°C)	6.0 (–10°C)	6.0 (-10°C)	8.5 (–10°C)	8.5 (–10°C)	9.4 (–10°C)	9.4 (–10°		
	Deciared Capacity	at bivalent temperature	kW	2.3 (-10°C)	3.8 (-10°C) 3.8 (-7°C)	4.1 (–10°C) 4.1 (–7°C)	5.2 (-7°C)	7.0 (–10°C)	7.0 (–10°C)	8.5 (–10°C)	8.5 (-10°C)	9.4 (-10°C)	9.4 (-10°		
		at operation limit temperature	kW	2.3 (-7 C) 2.3 (-10°C)	3.8 (-10°C)	4.1 (–10°C)	5.2 (-10°C)	4.5 (–15°C)	4.5 (–15°C)	6.0 (–15°C)	6.0 (–15°C)	7.0 (–15°C)	7.0 (–15°		
	Back Up Heating C		kW	0.3	0.5	0.5	0.6	2.0	2.0	0.0 (=15 C)	- 0.0 (=15 C)	7.0 (=15 C)	7.0 (-15		
	Applied Electricity	Consumption*2	kWh/a	774	1456	1458	1796	2428	2428	_	_	-			
	Annual Electricity Consumption*2 kWI SCOP*4		KVVII/a	4.7	4.1	4.4	4.5	4.6	4.6	_	_	_			
	SCOP	Energy Efficiency Class		4.7 A++	4.1 A+	4.4 A+	4.5 A+	4.0 A++	4.6 A++			_			
novotin	g Current (max)	Ellergy Efficiency Class	Α	8.7	13.7	15.0	15.1	20.5	12.0	27.2	12.2	30.7	12.2		
door	Input	Rated	kW	0.03	0.03	0.03	0.04	0.07	0.07	0.10	0.10	0.10	0.10		
nit	Operating Current		A	0.03	0.03	0.03	0.27	0.46	0.46	0.66	0.66	0.66	0.66		
	Dimensions <panel></panel>		mm		258 - 840 - 840			0.40		0 - 840 <40 - 9		0.00	0.00		
	Weight <panel></panel>	IH X W X D	kg	19 <5>	19 <5>	21 <5>	21 <5>	24 <5>	24 <5>	26 <5>	26 <5>	26 <5>	26 <5>		
	Air Volume [Lo-Miz	Mil Hil	m³/min		12 14 16 10	12 14 16 10	14 17 10 21	10 22 26 20	10 22 26 20	21 25 20 21	21 25 20 21	24-26-29-32			
	Sound Level (SPL)		dB(A)	26-29-20-21	27 20 21 22	27 20 21 22	29-20-22-24	21-24-27-40	21-24-27-40	22-27-41-44	22-27-41-44	36-39-42-44	26 20 42		
	Sound Level (PWL		dB(A)	51	54	54	56	61	61	65	65	65	65		
utdoor	Dimensions	H × W × D	mm		714-800-285		40-330	01	01		-330 (+40)	0.5	- 00		
nit	Weight	III A W A D	kg	35	41	54	55	76	78	84	85	84	85		
	Air Volume	Cooling	m³/min	34.3	45.8	50.1	50.1	79.0	79.0	86.0	86.0	86.0	86.0		
	All voluille	Heating	m³/min	32.7	43.7	50.1	50.1	79.0	79.0	92.0	92.0	92.0	92.0		
	Sound Level (SPL)		dB(A)	48	43.7	49	49	51	51	54	54	55	55		
	Sound Level (SFL)	Heating	dB(A)	48	48	51	51	54	54	56	56	57	57		
	Sound Level (PWL)		dB(A)	59	64	65	66	70	70	72	72	73	73		
	Operating Current		A A	8.5	13.5	14.8	14.8	20.0	11.5	26.5	11.5	30.0	11.5		
	Breaker Size	(IIIaA)	A	10	20	20	20	32	16	32	16	40	16		
xt.	Diameter	Liquid / Gas	mm	6.35 / 9.52	6.35 / 12.7	6.35 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.8		
χτ. iping	Max. Length	Out-In	m	20	30	30	30	55	55	65	65	65	65		
	Max. Height	Out-In	m	12	30	30	30	30	30	30	30	30	30		
		Cli+3	°C	10 .46	30	30	15 .46	3U 1E . 46	15 . 16	3U 1E . 46	15 .46	15 . 16	15 . 4		



IVI SERIES	(e)	60-140V/200/250 Ampere		Group										
NVFRTFR '						COMPO Wi-		Wiring	Drain Pum	n Flore	Fail	UPA		
	Silent &	Limit	Back-up	Optional	M-NET connection	COMPO			ift Up Dow		Self Rec			
			.,				Inverter H	leat Pump						
ndoor Unit				PLA- PLA- PLA- M35FA M50EA M60EA		PLA- M71EA PLA-M100EA		100EA	PLA-M125EA		PLA-M140EA			
Jnit		PUZ-	PUZ- ZM50VKA	PUZ- ZM60VHA	PUZ- 7M71VHA	PUZ- ZM100VKA	PUZ- ZM100VKA	PUZ- 7M125VKΔ	PUZ- 7M125YKA	PUZ- 7Μ140VKΔ	PUZ ZM140			
nt			ZIVIOOVIKA	ZIVIOUVIOA	ZIVIOOVIIA	21417 1 41174			ZIVITZOVICA	ZIVITZOTICA	ZIVITTOVICA	2101140		
Source	ce			Outdoor power supply										
Outdoor (V/Phase/Hz)			VKA • VHA: 230 / Single / 50, YKA: 400 / Three / 50											
Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.5	12.5	13.4	13.		
		kW	1.6 - 4.5			3.3 - 8.1	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0	5.5 - 14.0	6.2 - 15.0	6.2 -		
	Rated	kW	0.751	1.175		1.716	2.084	2.084	3.399	3.399	3.746	3.74		
EER			4.79	4.25	4.00	4.14	4.56	4.56	3.68	3.68	3.58	3.5		
	EEL Rank		-	-	-	-	-	-	-	-	-	-		
Design Load				5.0	6.1		9.5		-	-	-	_		
	Consumption*2	kWh/a	172	234	299	332	435	446	-	-	-	-		
SEER*4									-	-	-	-		
									-	_		_		
Capacity												16.		
												5.7 -		
	Rated	kVV										4.36		
												3.6		
	EEL Rank	11147										-		
	L. C.											-		
Deciared Capacity														
												_		
												_		
	Consumption	KVVII/a										_		
	Energy Efficiency Class										_			
	Energy Emelency Glass										28.7	13.		
	Rated											0.1		
												0.6		
		mm												
Weight <panel></panel>	•	kg	19 <5>	19 <5>	21 <5>	21 <5>	24 <5>	24 <5>	26 <5>	26 <5>	26 <5>	26 <		
Air Volume [Lo-Mi.	2-Mi1-Hi]	m³/min	11-13-15-16	12-14-16-18	12-14-16-18	14-17-19-21	19-23-26-29	19-23-26-29	21-25-28-31	21-25-28-31	24-26-29-32	24-26-		
Sound Level (SPL)	[Lo-Mi2-Mi1-Hi]	dB(A)	26-28-29-31	27-29-31-32	27-29-31-32	28-30-32-34	31-34-37-40	31-34-37-40			36-39-42-44			
	.)	dB(A)	51	54	54	56	61	61	65	65	65	65		
	$H \times W \times D$	mm												
												131		
Air Volume												120		
												120		
Sound Level (SPL)												50		
												52		
												70		
Operating Current	(max)											13.		
	II											16		
		_										9.52 / 100		
												30		
	Cooling*3	°C	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~		
		1 0	-15 ~ +40	-10 ~ +40	-15 ~ +46 -20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~		
	Jnit Source Outdoor (V/Phase Capacity Total Input EER Design Load Annual Electricity SEER** Capacity Total Input COP Design Load Declared Capacity Back Up Heating (Annual Electricity SCOP** g Current (max) Input Operating Current Dimensions <panels (pwl)="" air="" ariv="" cpanels="" dimensions="" height<="" length="" level="" max="" olume="" sound="" td="" volume="" weight=""><td>Joint Source Outdoor (V/Phase/Hz) Capacity Rated Min - Max Total Input Rated EER EEL Rank Design Load Annual Electricity Consumption*2 SEER** Energy Efficiency Class Capacity Rated Min - Max Total Input Rated COP EEL Rank Design Load Declared Capacity Annual Electricity Consumption*2 SEER** Energy Efficiency Class Capacity Rated Min - Max Total Input Rated COP EEL Rank Design Load Declared Capacity at reference design temperature at obvalent temperature at operation limit temperature at operation limit temperature Annual Electricity Consumption*2 SCOP** Energy Efficiency Class Gurrent (max) Input Rated Operating Current (max) Dimensions Panel> H × W × D Weight APanel> Air Volume (Lo-Mi2-Mi1-Hi) Sound Level (PWL) Dimensions H × W × D Weight Air Volume Cooling Heating Sound Level (PWL) Dimensions Weight Air Volume Cooling Heating Sound Level (PWL) Cooling Heating Sound Level (PWL) Cooling Deparating Current (max) Breaker Size Diameter Liquid / Gas Max. Length Uvl-In Liveling Liquid / Gas</td><td>Source Outdoor (V/Phase/Hz) Capacity Rated kW Min - Max kW Total Input Rated kW/Annual Electricity Consumption*2 kW/Annual Electricity Con</td><td> M35EA PUZ- ZM35VKA </td><td> M35EA M50EA M50EA M50EA M50EA </td><td> M35EA M50EA M60EA M60EA </td><td> M35EA M50EA M50EA M71EA PUZ- ZM35VKA ZM50VKA ZM50VHA ZM71VHA </td><td> PLA- PLA- PLA- PLA- PLA- M60EA M71EA PUZ- PUZ- PUZ- PUZ- PUZ- ZM30VKA ZM50VKA ZM50VKA</td><td> M35EA M50EA M71EA M71E</td><td> PLAN M36EA M50EA M50EA</td><td> PLA PLA</td><td> PLA PLA</td></panels>	Joint Source Outdoor (V/Phase/Hz) Capacity Rated Min - Max Total Input Rated EER EEL Rank Design Load Annual Electricity Consumption*2 SEER** Energy Efficiency Class Capacity Rated Min - Max Total Input Rated COP EEL Rank Design Load Declared Capacity Annual Electricity Consumption*2 SEER** Energy Efficiency Class Capacity Rated Min - Max Total Input Rated COP EEL Rank Design Load Declared Capacity at reference design temperature at obvalent temperature at operation limit temperature at operation limit temperature Annual Electricity Consumption*2 SCOP** Energy Efficiency Class Gurrent (max) Input Rated Operating Current (max) Dimensions Panel> H × W × D Weight APanel> Air Volume (Lo-Mi2-Mi1-Hi) Sound Level (PWL) Dimensions H × W × D Weight Air Volume Cooling Heating Sound Level (PWL) Dimensions Weight Air Volume Cooling Heating Sound Level (PWL) Cooling Heating Sound Level (PWL) Cooling Deparating Current (max) Breaker Size Diameter Liquid / Gas Max. Length Uvl-In Liveling Liquid / Gas	Source Outdoor (V/Phase/Hz) Capacity Rated kW Min - Max kW Total Input Rated kW/Annual Electricity Consumption*2 kW/Annual Electricity Con	M35EA PUZ- ZM35VKA	M35EA M50EA M50EA M50EA M50EA	M35EA M50EA M60EA M60EA	M35EA M50EA M50EA M71EA PUZ- ZM35VKA ZM50VKA ZM50VHA ZM71VHA	PLA- PLA- PLA- PLA- PLA- M60EA M71EA PUZ- PUZ- PUZ- PUZ- PUZ- ZM30VKA ZM50VKA ZM50VKA	M35EA M50EA M71EA M71E	PLAN M36EA M50EA M50EA	PLA PLA	PLA PLA		

[|] Indicated | Conting*3 | Coling*3 | Coling*4 | Coling*3 | Coling*

PLA-ZM/RP EA Indoor Unit Combinations Indoor unit combinations shown below are possible.

										Outd	oor U	nit Cap	pacity								
Indoor	Unit Combination				Fo	or Sing	jle						For	Twin			Fo	or Trip	le	For Qu	adruple
		35	50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power	Inverter (PUHZ-ZRP)	35x1	50x1	60x1	71x1	100x1	125x1	140x1	-	-	35x2	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	_	-	-	-	-	١	ASDD-	50TR-	E	MSDD-	50WR-E	MS	DT-111	R-E	MSDF-1	1111R-E
Standa	rd Inverter (SUZ & PUHZ-P)	35x1	50x1	60x1	71x1	100x1	125x1	140×1	-	-	-	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	-	-	-	-	_	-	MSI	DD-50	ΓR-E	MSDD-	50WR-E	MS	DT-111	R-E	MSDF-1	1111R-E

PLA-ZM SERIES

	60-140V/200
(3)	Ampe
Silent &	Limi

				Optional	Optional	Optional	Opti	onal	Optional				
Type								Inverter F	leat Pump				
Indoor U	nit			PLA- ZM35EA	PLA- ZM50EA	PLA- ZM60EA	PLA- ZM71EA	PLA-ZN	/100EA	PLA-ZN	И125EA	PLA-ZN	/140EA
Outdoor	Unit			PUHZ- ZRP35VKA2	PUHZ- ZRP50VKA2	PUHZ- ZRP60VHA2	PUHZ- ZRP71VHA2	PUHZ- ZRP100VKA3	PUHZ- ZRP100YKA3	PUHZ- ZRP125VKA3	PUHZ- ZRP125YKA3	PUHZ- ZRP140VKA3	PUHZ- ZRP140YKA3
Refrigera	int						1	R41	0A*1				
Power	Source							Outdoor po	wer supply				
Supply	Outdoor (V/Phase	/Hz)					VKA • VH	A:230 / Single /		Three / 50			
Cooling	Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.5	12.5	13.4	13.4
cooming	Cupucity	Min - Max	kW	1.6 - 4.5	2.3 - 5.6	2.7 - 6.5	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0	5.5 - 14.0	6.2 - 15.0	6.2 - 15.0
	Total Input	Rated	kW	0.78	1.33	1.66	1.79	2.20	2.20	3.84	3.84	4.36	4.36
	EER	riatoa		-	_	-	-	_		3.25	3.25	3.07	3.07
		EEL Rank		_	_	_	-	-	_	-	-	-	-
	Design Load		l kW	3.6	5.0	6.1	7.1	9.5	9.5	-	_	_	-
	Annual Electricity	Consumption*2	kWh/a	170	253	318	336	461	472	_	_	-	-
	SEER*4		1	7.4	6.9	6.7	7.4	7.2	7.0	-	-	-	-
		Energy Efficiency Class		A++	Δ++	Δ++	A++	A++	A++	-	_	_	_
Heating	Capacity	Rated	l kW	4.1	6.0	7.0	8.0	11.2	11.2	14.0	14.0	16.0	16.0
(Average		Min - Max	kW	1.6 - 5.2	2.5 - 7.3	2.8 - 8.2	3.5 - 10.2	4.5 - 14.0	4.5 - 14.0	5.0 - 16.0	5.0 - 16.0	5.7 - 18.0	5.7 - 18.0
Season)	Total Input	Rated	kW	0.85	1.55	1.89	1.90	2.60	2.60	3.67	3.67	4.84	4.84
	COP	Triatoa	1 1000	-	-	-	-	-	-	3.81	3.81	3.30	3.30
		EEL Rank		_	_	_	_	_		-	-	-	-
	Design Load		I kW	2.5	3.8	4.4	4.7	7.8	7.8	_	_	_	_
		at reference design temperature	kW	2.5 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)	-	_		_
	Dooial ou oupdoity	at bivalent temperature	kW	2.5 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)	_	_	_	_
		at operation limit temperature	kW	2.1 (-11°C)	3.7 (-11°C)	2.8 (-20°C)	3.5 (-20°C)	5.8 (-20°C)	5.8 (-20°C)	-		_	_
	Back Up Heating (kW	0	0	0	0	0	0	_	_	_	_
	Annual Electricity		kWh/a	714	1109	1337	1342	2229	2229	-	_	_	_
	SCOP*4	Consumption	1100011/10	4.9	4.8	4.6	4.9	4.9	4.9	_	_	_	_
		Energy Efficiency Class		A++	A++	A++	A++	A++	A++	_	_	_	_
Operatin	g Current (max)		ΙΑ	13.2	13.2	19.2	19.3	27.0	8.5	27.0	10.0	28.7	13.7
Indoor	Input	Rated	kW	0.03	0.03	0.03	0.05	0.07	0.07	0.08	0.08	0.10	0.10
Unit	Operating Current		A	0.21	0.22	0.22	0.34	0.47	0.47	0.52	0.52	0.66	0.66
	Dimensions <panel></panel>		mm	258 - 84	0 - 840 <40 - 9	50 - 950>			298 - 84	0 - 840 <40 - 9	50 - 950>		
	Weight <panel></panel>		ka		21 <5>		24 <5>	26 <5>	26 <5>	26 <5>	26 <5>	26 <5>	26 <5>
	Air Volume [Lo-Miz	2-Mi1-Hil	m³/min	11-13-15-16	12-14-16-18	12-14-16-18	17-19-21-23	19-22-25-28	19-22-25-28	21-24-26-29	21-24-26-29	24-26-29-32	24-26-29-32
	Sound Level (SPL)		dB(A)	26-28-29-31	27-29-31-32	27-29-31-32	28-30-33-36	31-34-37-40	31-34-37-40	33-36-39-41	33-36-39-41	36-39-42-44	36-39-42-44
	Sound Level (PWL)	dB(A)	51	54	54	57	61	61	62	62	65	65
Outdoor	Dimensions	H×W×D	mm	630 - 80	9 - 300	943 - 950	- 330 (+30)			1338 - 1050) - 330 (+40)		
Unit	Weight		kg	43	46	70	70	116	123	116	125	118	131
	Air Volume	Cooling	m³/min	45	45	55	55	110	110	120	120	120	120
		Heating	m³/min	45	45	55	55	110	110	120	120	120	120
	Sound Level (SPL)	Cooling	dB(A)	44	44	47	47	49	49	50	50	50	50
		Heating	dB(A)	46	46	48	48	51	51	52	52	52	52
	Sound Level (PWL)	Cooling	dB(A)	65	65	67	67	69	69	70	70	70	70
	Operating Current	(max)	A	13.0	13.0	19.0	19.0	26.5	8.0	26.5	9.5	28.0	13.0
	Breaker Size		Α	16	16	25	25	32	16	32	16	40	16
Ext.	Diameter	Liquid / Gas	mm	6.35 / 12.7	6.35 / 12.7	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
Piping	Max. Length	Out-In	m	50	50	50	50	75	75	75	75	75	75
	Max. Height	Out-In	m	30	30	30	30	30	30	30	30	30	30
	ed Operating Range	Cooling*3	°C	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46
[Outdoor]	Heating	°C	-11 ~ +21	-11 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21
			•			•			•				

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of COz, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 Optional air protection guide is required where ambient temperature is lower than –5°C.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

			Optional	Optional	Optional	Optional	Opi	ona		Optional			
Туре								Inverter H	eat Pump				
Indoor U	nit			PLA-	PLA-	PLA-	PLA-					DI	
				M35EA	M50EA	M60EA	M71EA	PLA-M			1125EA	PLA-M	
Outdoor	Unit			SUZ- KA35VA6	SUZ- KA50VA6	SUZ- KA60VA6	SUZ- KA71VA6	PUHZ- P100VKA	PUHZ- P100YKA	PUHZ- P125VKA	PUHZ- P125YKA	PUHZ- P140VKA	PUHZ- P140YKA
Refrigera	nt							R410	0A*1				
Power	Source							Outdoor po					
	Outdoor (V/Phase	/Hz)					VA • VKA	A:230 / Single / 5		ree / 50			
Cooling	Capacity	Rated	kW	3.6	5.5	5.7	7.1	9.4	9.4	12.1	12.1	13.6	13.6
,	oupuonty	Min - Max	kW	1.4 - 3.9	2.3 - 5.6	2.3 - 6.3	2.8 - 8.1	3.7 - 10.6	3.7 - 10.6	5.6 - 13.0	5.6 - 13.0	5.8 - 14.1	5.8 - 14.1
	Total Input	Rated	kW	1.02	1.61	1.76	2.10	3.18	3.18	4.10	4.10	5.41	5.41
	EER	1		-	-	-	-	2.95	2.95	2.95	2.95	2.51	2.51
		EEL Rank		-	-	-	-	_	-	-	-	_	_
	Design Load		kW	3.6	5.5	5.7	7.1	9.4	9.4	_	-	-	-
	Annual Electricity	Consumption*2	kWh/a	181	295	307	400	538	538	-	-	-	_
	SEER*4	•		6.9	6.5	6.5	6.2	6.1	6.1	-	-	-	-
		Energy Efficiency Class		A++	A++	A++	A++	A++	A++	-	-	-	-
leating	Capacity	Rated	kW	4.1	5.8	6.9	8.0	11.2	11.2	13.5	13.5	15.0	15.0
Average		Min - Max	kW	1.7 - 5.0	1.7 - 7.2	2.5 - 8.0	2.6 - 10.2	2.8 - 12.5	2.8 - 12.5	4.8 - 15.0	4.8 - 15.0	4.9 - 15.8	4.9 - 15.8
eason)	Total Input	Rated	kW	1.00	1.69	1.97	2.24	3.26	3.26	3.84	3.84	4.67	4.67
	COP			_	-	-	-	3.43	3.43	3.51	3.51	3.21	3.21
		EEL Rank		-	-	-	-	-	-	-	-	-	-
	Design Load		kW	2.6	4.3	4.6	5.8	8.0	8.0	1	-	-	_
	Declared Capacity	at reference design temperature	kW	2.3 (-10°C)	3.8 (-10°C)	4.0 (-10°C)	4.7 (-10°C)	6.0 (-10°C)	6.0 (-10°C)	-	-	-	-
		at bivalent temperature	kW	2.3 (-7°C)	3.8 (-7°C)	4.1 (-7°C)	5.1 (-7°C)	7.0 (-7°C)	7.0 (-7°C)	_	-	-	_
		at operation limit temperature	kW	2.3 (-10°C)	3.8 (-10°C)	4.0 (-10°C)	4.7 (-10°C)	4.5 (-15°C)	4.5 (-15°C)	-	-	-	-
	Back Up Heating (kW	0.3	0.5	0.6	1.1	2.0	2.0	_	-	-	-
	Annual Electricity	Consumption*2	kWh/a	826	1505	1498	1888	2432	2432	-	-	-	-
	SCOP*4			4.4	4.0	4.3	4.3	4.6	4.6	_	-	-	-
		Energy Efficiency Class		A ⁺	A+	Α+	Α+	A++	A++		-		
	g Current (max)	In	A	8.4	12.2	14.2	16.4	20.5	12.0	27.2	12.2	30.7	12.2
ndoor Jnit	Input	Rated	kW	0.03	0.03	0.03	0.04	0.07	0.07	0.10	0.10	0.10	0.10 0.66
JIIIL	Operating Current		Α	0.20	0.22	0.24	0.27	0.46	0.46	0.66 0 - 840 <40 - 95	0.66	0.66	0.66
	Dimensions <panel> Weight <panel></panel></panel>	[H × W × D	mm kg	19 <5>	58 - 840 - 840 < 19 <5>	<40 - 950 - 950 21 <5>	> 21 <5>	24 <5>	298 - 84	0 - 840 <40 - 95 26 <5>	50 - 950> 1 26 <5>	26 <5>	26 <5>
	Air Volume [Lo-Miz	2 Mil Lii	m³/min			12-14-16-18		19-23-26-29	19-23-26-29	21-25-28-31		24-26-29-32	24-26-29-3
	Sound Level (SPL)		dB(A)				28-30-32-34			33-37-41-44			36-39-42-4
	Sound Level (PWL		dB(A)	51	54	54	56	61	61	65	65	65	65
Jutdoor	Dimensions	H × W × D	mm	550 - 800 - 285		880 - 840 - 330		01	. 01		050 - 330		
Jnit	Weight	111.011.00	kg	35	54	50	53	76	78	84	85	84	85
	Air Volume	Cooling	m³/min	36.3	44.6	40.9	50.1	79	79	86	86	86	86
		Heating	m³/min	34.8	44.6	49.2	48.2	79	79	92	92	92	92
	Sound Level (SPL)	Cooling	dB(A)	49	52	55	55	51	51	54	54	56	56
		Heating	dB(A)	50	52	55	55	54	54	56	56	57	57
	Sound Level (PWL)	Cooling	dB(A)	62	65	65	69	70	70	72	72	75	75
	Operating Current	(max)	Α	8.2	12.0	14.0	16.1	20	11.5	26.5	11.5	30.0	11.5
	Breaker Size		А	10	20	20	20	32	16	32	16	40	16
xt.	Diameter	Liquid / Gas	mm	6.35 / 9.52	6.35 / 12.7	6.35 / 15.88		9.52 / 15.88	9.52 / 15.88	9.52 / 15.88		9.52 / 15.88	9.52 / 15.8
Piping	Max. Length	Out-In	m	20	30	30	30	50	50	50	50	50	50
	Max. Height	Out-In	m	12	30	30	30	30	30	30	30	30	30
Guarante Outdoor	ed Operating Range	Cooling*3 Heating	°C	-10 ~ +46 -10 ~ +24	-15 ~ +46 -10 ~ +24	-15 ~ +46 -10 ~ +24	-15 ~ +46 -10 ~ +24	-15 ~ +46 -15 ~ +21	-15 ~ +46 -15 ~ +21	-15 ~ +46 -15 ~ +21	-15 ~ +46 -15 ~ +21	-15 ~ +46 -15 ~ +21	-15 ~ +46 -15 ~ +21

^{**1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

**2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

**3 Optional air protection guide is required where ambient temperature is lower than –5°C.

**4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

	60-140V/200/250														
Silent	Ampere Limit	Rotation Back-up	Group Control	M-NET connection	СОМРО	Wi-Fi ı)) Interface	MXZ	Cleaning free,	Wiring Reuse	Drain Lift Up	Pump Down	Flare connection	Self Diagnosis	Failure Recall	

Туре								Inverter H	eat Pump				
Indoor U	nit			PLA- M35EA	PLA- M50EA	PLA- M60EA	PLA- M71EA	PLA-M	1100EA	PLA-M	125EA	PLA-M	140EA
Outdoor				PUHZ- ZRP35VKA2	PUHZ- ZRP50VKA2	PUHZ- ZRP60VHA2	PUHZ- ZRP71VHA2			PUHZ- ZRP125VKA3	PUHZ- ZRP125YKA3	PUHZ- ZRP140VKA3	PUHZ- ZRP140YKA3
Refrigera								R41					
Power	Source								wer supply				
Supply	Outdoor (V/Phase	/Hz)					VKA•VH	A:230 / Single /	50, YKA:400 / T	hree / 50			
Cooling	Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.5	12.5	13.4	13.4
		Min - Max	kW	1.6 - 4.5	2.3 - 5.6	2.7 - 6.5	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0	5.5 - 14.0	6.2 - 15.0	6.2 - 15.0
	Total Input	Rated	kW	0.83	1.42	1.75	1.87	2.23	2.23	3.87	3.87	4.39	4.39
	EER			-	-	-	-	-	-	3.23	3.23	3.05	3.05
		EEL Rank		-	-	-	-	-	-		-	-	-
	Design Load		kW	3.6	5.0	6.1	7.1	9.5	9.5		-	-	-
	Annual Electricity	Consumption*2	kWh/a	174	258	321	341	465	476	-	-	-	-
	SEER*4	-		7.2	6.7	6.6	7.2	7.1	6.9	-	-	-	-
		Energy Efficiency Class		A++	A++	A++	A++	A++	A++	-	-	-	-
Heating		Rated	kW	4.1	6.0	7.0	8.0	11.2	11.2	14.0	14.0	16.0	16.0
(Average		Min - Max	kW	1.6 - 5.8	2.5 - 7.3	2.8 - 8.2	3.5 - 10.2	4.5 - 14.0	4.5 - 14.0	5.0 - 16.0	5.0 - 16.0	5.7 - 18.0	5.7 - 18.0
Season)		Rated	kW	0.92	1.81	2.07	2.11	2.69	2.69	3.77	3.77	4.90	4.90
	COP			-	_	-	-	-	-	3.71	3.71	3.26	3.26
		EEL Rank		-	-	-	-	-	-	_	-	-	-
	Design Load		kW	2.5	3.8	4.4	4.7	7.8	7.8	_	-	-	-
	Declared Capacity	at reference design temperature	kW	2.5 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)	_	-	-	-
		at bivalent temperature	kW	2.5 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)	-	-	-	-
		at operation limit temperature	kW	2.1 (-11°C)	3.7 (-11°C)	2.8 (-20°C)	3.5 (-20°C)	5.8 (-20°C)	5.8 (-20°C)	-	-	-	-
	Back Up Heating C		kW	0	0	0	0	0	0	-	-	-	-
	Annual Electricity	Consumption*2	kWh/a	764	1212	1418	1402	2468	2468	_	_	-	-
	SCOP*4			4.5	4.3	4.3	4.6	4.4	4.4	-	-	-	-
		Energy Efficiency Class		A+	A+	A+	A++	A+	A+	ı	-	-	-
	g Current (max)		А	13.2	13.2	19.2	19.3	27.0	8.5	27.2	10.2	28.7	13.7
Indoor	Input	Rated	kW	0.03	0.03	0.03	0.04	0.07	0.07	0.10	0.10	0.10	0.10
Unit	Operating Current		Α	0.20	0.22	0.24	0.27	0.46	0.46	0.66	0.66	0.66	0.66
	Dimensions <panel></panel>	H × W × D	mm			<40 - 950 - 950					<40 - 950 - 950		
	Weight <panel></panel>		kg	19 <5>	19 <5>	21 <5>	21 <5>	24 <5>	24 <5>	26 <5>	26 <5>	26 <5>	26 <5>
	Air Volume [Lo-Mi2		m³/min	11-13-15-16	12-14-16-18	12-14-16-18			19-23-26-29			24-26-29-32	
	Sound Level (SPL)		dB(A)					31-34-37-40				36-39-42-44	
	Sound Level (PWL		dB(A)	51	54	54	56	61	61	65	65	65	65
Unit	Dimensions	H × W × D	mm	630 - 80		943 - 950		440	400		330 (+40)	440	404
Unit	Weight	I a .:	kg	43	46	70	70	116	123	116	125	118	131 120
	Air Volume	Cooling	m³/min	45	45	55	55	110	110	120	120	120	
		Heating	m³/min	45	45	55	55	110	110	120	120 50	120 50	120 50
	Sound Level (SPL)		dB(A)	44	44	47	47	49	49	50			
		Heating	dB(A)	46	46	48	48	51	51	52	52	52	52
	Sound Level (PWL)		dB(A)	65	65 13.0	67 19.0	67 19.0	69 26.5	69 8.0	70 26.5	70 9.5	70 28.0	70 13.0
	Operating Current Breaker Size	(max)	A	13.0 16	13.0	19.0	19.0	32	16	32	9.5	28.0 40	
Ext.		Liquid / Gas	A	6.35 / 12.7	6.35 / 12.7		9.52 / 15.88	9.52 / 15.88	9.52 / 15.88		9.52 / 15.88	9.52 / 15.88	16
Ext. Piping	Diameter		mm			9.52 / 15.88				9.52 / 15.88			9.52 / 15.88
ribing	Max. Length	Out-In	m	50	50	50	50	75	75	75	75 30	75 30	75 30
C	Max. Height	Out-In	°C	30	30	30	30	30	30	30			
[Outdoor	ed Operating Range			-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46 -20 ~ +21
Uutaoor	l	Heating	°C	-11 ~ +21	-11 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-2U ~ +2 l

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

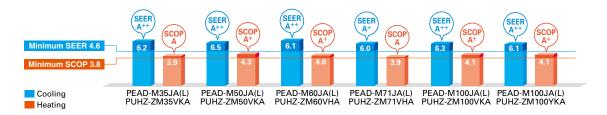
*3 Optional air protection guide is required where ambient temperature is lower than -5°C.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

The thin, ceiling-concealed indoor units of this series are the perfect answer for the air conditioning needs of buildings with minimum ceiling installation space and wideranging external static pressure. Energy-saving efficiency has been improved, reducing electricity consumption and contributing to a further reduction in operating cost.

Compact Indoor Units

The height of the models from 35–140 has been unified to 250mm, which makes installation in low ceilings with minimal clearance space possilbe.


PEAD-M JA(L)

External Static Pressure

External static pressure conversion can be set up to five stages. Capable of being set to a maximum of 150Pa, units are applicable to a wide range of building types.

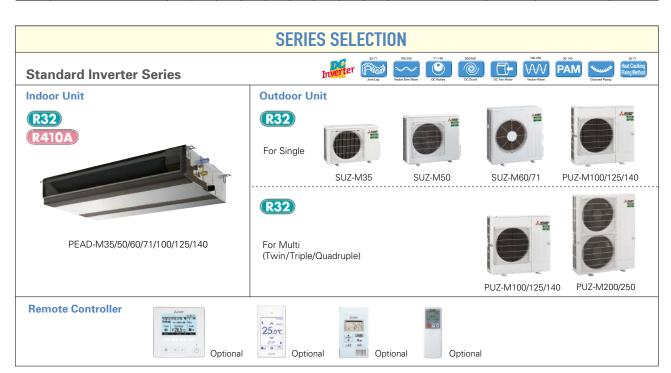
ErP Lot 10-compliant, Achieving High Energy Efficiency of SEER/SCOP Rank A+ and A++

A direct-current (DC) fan motor is installed in the indoor unit, increasing the seasonal energy efficiency of the newly designed Power Inverter Series (PUHZ-ZRP) and resulting in compliance of the full-capacity models with ErP Lot 10 and energy rankings of A+/A++ for cooling and A/A+ for heating. This contributes to an impressive reduction in the cost of annual electricity.

Drain Pump Option Available with All Models

The line-up consists of two types, models with or without a built-in drain pump.

PEAD-M JA → Drain pump built-in


PEAD-M JAL \rightarrow No drain pump

* Units with an "L" included at the end of the model name are not equipped with a drain pump.

PEAD-M JA Indoor Unit Combinations Indoor unit combinations shown below are possible.

										Outd	oor Uı	nit Cap	acity								
Indoor	Unit Combination				Fo	or Sing	jle						For	Twin			Fo	or Trip	le	For Qu	adruple
			50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power	Inverter (PUHZ-ZRP)	35x1	50x1	60x1	71x1	100x1	125x1	140x1	-	-	35x2	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	_	_	-	-	-	-	_	N	1SDD-	50TR2	-E	MS 50W	DD- R2-E	MSE	OT-111	R3-E	MS 1111	DF- R2-E

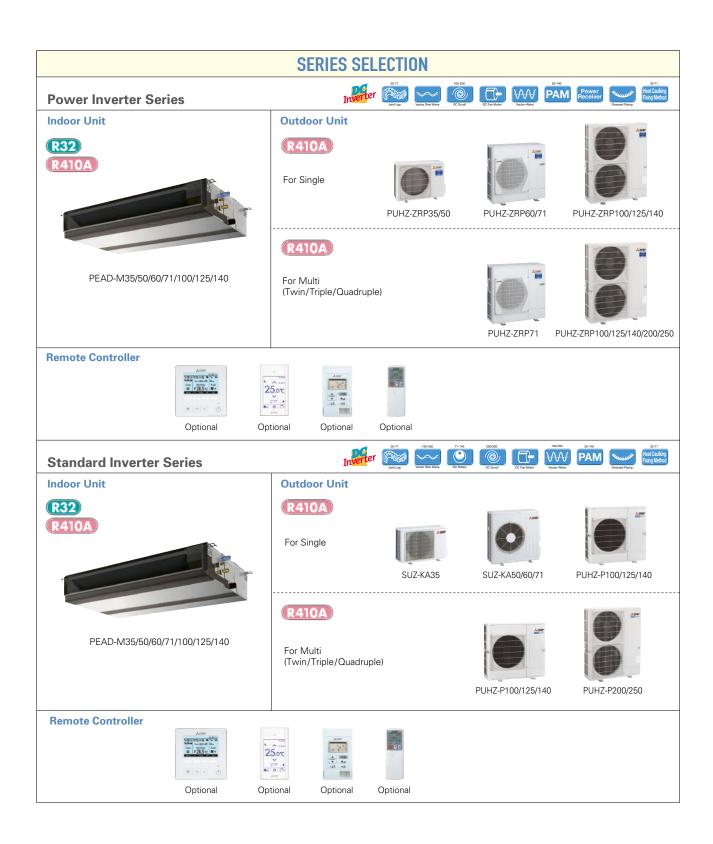
PEAD-M JA Indoor Unit Combinations Indoor unit combinations shown below are possible.

										Outd	oor Ui	nit Cap	acity								
Indoor	Unit Combination				Fo	or Sing	le						For	Twin			F	or Trip	le	For Qu	adruple
			50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Standa	ard Inverter (PUHZ-P&SUZ)	35x1	50x1	60x1	71x1	100x1	125x1	140x1	-	-	-	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	-	-	-	-	-	-	MSD	D-50T	R2-E	MS 50W	DD- /R2-E	MSI	OT-111	R3-E	MS 1111	DF- IR2-E

PEAD-M SERIES

			Optional	<u> Liit Op</u> (L	JOWII								
Гуре							,	nverter Heat P	ump				
idoor Ur	nit			PEAD- M35JA(L)	PEAD- M50JA(L)	PEAD- M60JA(L)	PEAD- M71JA(L)	PEAD-M	100JA(L)	PEAD-M	125JA(L)	PEAD-M	140JA(L)
utdoor	Unit			PUZ- ZM35VKA	PUZ- ZM50VKA	PUZ- ZM60VHA	PUZ- ZM71VHA	PUZ- ZM100VKA	PUZ- ZM100YKA	PUZ- ZM125VKA	PUZ- ZM125YKA	PUZ- ZM140VKA	PUZ- ZM140Y
efrigera	nt							R3					
	Source								wer supply				
upply	Outdoor (V/Phase	/Hz)						A:230 / Single /					
ooling	Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.5	12.5	13.4	13.4
		Min - Max	kW	1.6 - 4.5	2.3 - 5.6	2.7 - 6.7	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0	5.5 - 14.0	6.2 - 15.3	6.2 - 15
	Total Input	Rated	kW	0.837(0.820)	1.201(1.187)	1.509(1.495)	1.858(1.844)	2.272(2.256)	2.272(2.256)	3.333(3.315)	3.333(3.315)	3.631(3.611)	3.631(3.
	EER*4			4.30(4.39)	4.16(4.21)	4.04(4.08)	3.82(3.85)	4.18(4.21)	4.18(4.21)	3.75(3.77)	3.75(3.77)	3.69(3.71)	3.69(3.
		EEL Rank	T	_	-					-	-	-	-
	Design Load		kW	3.6	5.0	6.1	7.1	9.5	9.5	-	-	-	-
	Annual Electricity	Consumption*2	kWh/a	217(201)	282(268)	350(337)	428(414)	534(521)	543(532)	-	-	-	-
	SEER*4,*5	F		5.8(6.2)	6.2(6.5)	6.1(6.3)	5.8(6.0)	6.2(6.3)	6.1(6.2)	-	-	-	-
	0	Energy Efficiency Class		A+(A++)	A++(A++)	A++(A++)	A+ (A+)	A++(A++)	A++(A++)	14.0	14.0	10.0	16.0
	Capacity	Rated	kW	4.1 1.6 - 5.2	6.0 2.5 - 7.3	7.0 2.8 - 8.2	8.0 3.5 - 10.2	11.2 4.5 - 14.0	11.2 4.5 - 14.0	14.0 5.0 - 16.0	14.0 5.0 - 16.0	16.0 5.7 - 18.0	5.7 - 1
verage ason)	-	Min - Max											
ason	Total Input COP*4	Rated	kW	0.917	1.312	1.616	1.932	2.598	2.598	3.349	3.349	3.970	3.970
		EEL B. I		4.47	4.57	4.33	4.14	4.31	4.31	4.18	4.18	4.03	4.03
		EEL Rank	I kW	2.4	3.8	4.4	4.9	7.8	7.8				
	Design Load							7.8 (–10°C)	7.8 (–10°C)	-	-	-	-
	Deciared Capacity	at reference design temperature	kW	2.4 (-10°C) 2.4 (-10°C)	3.8 (-10°C) 3.8 (-10°C)	4.4 (-10°C) 4.4 (-10°C)	4.9(-10°C) 4.9(-10°C)	7.8 (=10°C) 7.8 (=10°C)	7.8 (=10°C) 7.8 (=10°C)			_	-
		at bivalent temperature	kW	2.4(-10°C)	3.8 (=10°C) 3.7 (=11°C)	2.8 (–20°C)	3.7 (–20°C)	5.8 (–20°C)	5.8 (=20°C)		-		
	Daali II. II. atin n C	at operation limit temperature	kW	0	3.7(=11°C)	0	0	0 0	0.8(-20°C)			-	-
	Back Up Heating C Annual Electricity		kWh/a	858	1237	1540	1751	2666	2666		=	_	
	SCOP*4,*5	Consumption**	KVVII/a	3.9	4.3	4.0	3.9	4.1	4.1				_
		Energy Efficiency Class		3.9 A	4.3 A+	A+	3.9 A	A+	A+			_	-
avetin	g Current (max)	Lifergy Lifficiency Class	ΤA	14.1	14.4	20.6	21.0	29.2	10.7	29.3	12.3	30.8	15.8
door	Input [Cooling / Hea	ating Rated	kW	0.09/0.07	0.11/0.09	0.12/0.10	0.17/0.15	0.25/0.23	0.25/0.23	0.36/0.34	0.36/0.34	0.39/0.37	0.39/0
nit	Operating Current		A	1.07	1.39	1.62	1.97	2.65	2.65	2.76	2.76	2.78	2.78
	Dimensions <panel></panel>	H × W × D	mm		00-732		00-732	2.03		00-732	2.70		00-732
	Weight <panel></panel>	JIIX W X D	ka	26 (25)	27 (26)	30 (29)	30 (29)	39 (38)	39 (38)	40 (39)	40 (39)	44 (43)	44 (4:
	Air Volume [Lo-Mic	LHil	m³/min		12.0-14.5-17.0			24.0-29.0-34.0					
	External Static Pre		Pa	10.0 12.0 11.0	12.0 11.0 17.0	11.0 10.0 21.0	17.0 21.0 20.0		/ 100 / 150	20.0 00.0 12.0	120.0 00.0 12.0	02.0 00.0 10.0	02.0 00.0
	Sound Level (SPL)		dB(A)	23 - 27 - 30	26 - 31 - 35	25 - 29 - 33	26 - 30 - 34	29 - 34 - 38	29 - 34 - 38	33 - 36 - 40	33 - 36 - 40	34 - 38 - 43	34 - 38
	Sound Level (PWL		dB(A)	54	59	55	58	62	62	66	66	67	67
ıtdoor	Dimensions	IH×W×D	mm	630 - 80	09 - 300	943 - 950 -	330 (+25)			1338 - 1050	0 - 330 (+40)		
nit	Weight		kg	46	46	70	70	116	123	116	125	118	131
	Air Volume	Cooling	m³/min	45	45	55	55	110	110	120	120	120	120
		Heating	m³/min	45	45	55	55	110	110	120	120	120	120
	Sound Level (SPL)	Cooling	dB(A)	44	44	47	47	49	49	50	50	50	50
		Heating	dB(A)	46	46	49	49	51	51	52	52	52	52
	Sound Level (PWL)	Cooling	dB(A)	65	65	67	67	69	69	70	70	70	70
	Operating Current	(max)	Α	13.0	13.0	19.0	19.0	26.5	8.0	26.5	9.5	28.0	13.0
	Breaker Size		А	16	16	25	25	32	16	32	16	40	16
rt.	Diameter	Liquid / Gas	mm	6.35 / 12.7	6.35 / 12.7	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 1
ping	Max. Length	Out-In	m	50	50	55	55	100	100	100	100	100	100
	Max. Height	Out-In	m	30	30	30	30	30	30	30	30	30	30
uarante Dutdoorl	ed Operating Range	Cooling*3 Heating	°C	-15 ~ +46 -11 ~ +21	-15 ~ +46 -11 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ + -20 ~ +

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with linipher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.
*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.
*3 Optional air protection guide is required where ambient temperature is lower than -5°C. *4 EER/COP and SEER/SCOP for M35-71 are measured at ESP 35Pa, for M100 at ESP 37Pa, for M125/140 at ESP 50Pa.
*5 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No208/2012.


			Optional										
Туре								nverter Heat P	ump				
Indoor U	nit			PEAD- M35JA(L)	PEAD- M50JA(L)	PEAD- M60JA(L)	PEAD- M71JA(L)	PEAD-M	100JA(L)	PEAD-M	125JA(L)	PEAD-M	140JA(L)
Outdoor	Unit			SUZ- M35VA	SUZ- M50VA	SUZ- M60VA	SUZ- M71VA	PUZ- M100VKA	PUZ- M100YKA	PUZ- M125VKA	PUZ- M125YKA	PUZ- M140VKA	PUZ- ZM140YKA
Refrigera	nt							R3	2*1			•	
Power	Source							Outdoor po	wer supply				
Supply	Outdoor (V/Phase	/Hz)					VA • VKA	: 230 / Single / 9	50, YKA: 400 / T	hree / 50			
Cooling	Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.1	12.1	13.4	13.4
cooming		Min - Max	kW	0.8 - 3.9	1.7 - 5.6	1.6 - 6.3	2.2 - 8.1	4.0 - 10.6	4.0 - 10.6	6.0 - 13.0	6.0 - 13.0	6.1 - 14.1	6.1 - 14.1
	Total Input	Rated	kW	0.92(0.90)	1.35(1.33)	1.69(1.67)	2.02(2.00)	2.87(2.85)	2.87(2.85)	4.01(3.99)	4.01(3.99)	4.76	4.76
	EER*4			3.90(4.00)	3.70(3.75)	3.60(3.65)	3.50(3.55)	3.30(3.33)	3.30(3.33)	3.01(3.03)	3.01(3.03)	2.81	2.81
		EEL Rank		_	-	_	-	-	-	_	-	_	_
	Design Load		kW	3.6	5.0	6.1	7.1	9.5	9.5	12.1	12.1	13.4	13.4
	Annual Electricity	Consumption*2	kWh/a	217(199)	287(271)	353(335)	428(411)	613(598)	613(598)	-	-	-	-
	SEER*4,*5	•		5.8(6.3)	6.1(6.4)	6.0(6.3)	5.8(6.0)	5.4(5.5)	5.4(5.5)	-	-	-	-
		Energy Efficiency Class		A+(A++)	A++(A++)	A+(A++)	A+ (A+)	A (A)	A (A)	-	-	-	-
	Capacity	Rated	kW	4.1	6.0	7.0	8.0	11.2	11.2	13.5	13.5	15.0	15.0
(Average		Min - Max	kW	1.1 - 5.0	1.5 - 7.2	1.6 - 8.0	2.0 - 10.2	2.8 - 12.5	2.8 - 12.5	4.1 - 15.0	4.1 - 15.0	4.2 - 15.8	4.2 - 15.8
Season)	Total Input	Rated	kW	1.02	1.46	1.84	2.15	2.94	2.94	3.73	3.73	4.15	4.15
	COP*4			4.00	4.10	3.80	3.71	3.80	3.80	3.61	3.61	3.61	3.61
		EEL Rank		-	-	-	-	-	-	-	-	-	-
	Design Load		kW	2.6	4.3	4.6	5.8	8.0	8.0	8.5	8.5	9.4	9.4
	Declared Capacity	at reference design temperature	kW	2.3(-10°C)	3.8 (-10°C)	4.1(-10°C)	5.2(-10°C)	6.0(-10°C)	6.0(-10°C)	8.5(-10°C)	8.5(-10°C)	9.4(-10°C)	9.4(-10°C)
		at bivalent temperature	kW	2.3(-7°C)	3.8 (-7°C)	4.1(-7°C)	5.2(-7°C)	7.0(-7°C)	7.0(-7°C)	8.5(-10°C)	8.5(-10°C)	9.4(-10°C)	9.4(-10°C)
		at operation limit temperature	kW	2.3(-10°C)	3.8(-10°C)	4.1(-10°C)	5.2(-10°C)	4.5(-15°C)	4.5(-15°C)	6.0(-15°C)	6.0(-15°C)	7.0(-15°C)	7.0(-15°C)
	Back Up Heating (kW	0.5	0.5	0.5	0.6	2.0	2.0	-	-	-	-
	Annual Electricity	Consumption*2	kWh/a	931	1430	1594	2080	2795	2795	-	-	-	-
	SCOP*4,*5	F. F. C.		3.9	4.2	4.0	3.9	4.0	4.0	-	-	-	-
	2 11	Energy Efficiency Class		A	A+	A+	A	A+	A+	-	-	-	-
Indoor	g Current (max)	e db. i	kW	9.6	14.9	16.4	16.8	22.7	14.2	29.3	14.3	32.8	14.3
Unit	Input [Cooling / He			1.07	1.39					2.76	2.76		
Oiiit	Operating Current Dimensions <panel></panel>		A mm		00-732	1.62	1.97	2.65	2.65	00-732	2.76	2.78	2.78
	Weight <panel></panel>	[H × W × D	kg	26 (25)	27 (26)	30 (29)	30 (29)	39 (38)	39 (38)	40 (39)	40 (39)	44 (43)	44 (43)
	Air Volume [Lo-Mi	4 Lii	m³/min									32.0-39.0-46.0	
	External Static Pre		Pa	10.0-12.0-14.0	12.0-14.5-17.0	14.5-16.0-21.0	17.5-21.0-25.0		/ 100 / 150	23.0-30.0-42.0	29.0-30.0-42.0	32.0-33.0-40.0	32.0-33.0-40.0
	Sound Level (SPL)		dB(A)	23 - 27 - 30	26 - 31 - 35	25 - 29 - 33	26 - 30 - 34	29 - 34 - 38	29 - 34 - 38	33 - 36 - 40	33 - 36 - 40	34 - 38 - 43	34 - 38 - 43
	Sound Level (PWL		dB(A)	54	59	55	58	62	62	66	66	67	67
Outdoor	Dimensions	IH×W×D	mm		714 - 800 - 285	880 - 84		981 - 1050 - 330	02	981 - 1050		07	07
Unit	Weight	IIIAWAB	kg	35	41	54	55	76	78	84	85	84	85
	Air Volume	Cooling	m³/min	34.3	45.8	50.1	50.1	79.0	79.0	86.0	86.0	86.0	86.0
		Heating	m³/min	32.7	43.7	50.1	50.1	79.0	79.0	92.0	92.0	92.0	92.0
	Sound Level (SPL)	Cooling	dB(A)	48	48	49	49	51	51	54	54	55	55
		Heating	dB(A)	48	49	51	51	54	54	56	56	57	57
	Sound Level (PWL)		dB(A)	59	64	65	66	70	70	72	72	73	73
	Operating Current		A	8.5	13.5	14.8	14.8	20.0	11.5	26.5	11.5	30.0	11.5
	Breaker Size	•	Α	16	20	20	20	32	16	32	16	40	16
Ext.	Diameter	Liquid / Gas	mm	6.35 / 9.52	6.35 / 12.7	6.35 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
Piping	Max. Length	Out-In	m	20	30	30	30	55	55	65	65	65	65
	Max. Height	Out-In	m	12	30	30	30	30	30	30	30	30	30
	ed Operating Range	Cooling*3	°C	-10 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46
[Outdoor]	Heating	°C	-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24	-15 ~ +21	-15 ~ +21	-15 ~ +21	-15 ~ +21	-15 ~ +21	-15 ~ +21
*4.0.0			-	•	•	L (OLA/D) L L	•	•	•	. 91.11.1	DIAMP ICL II II	•	T1 1

^{**1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with lingher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 Optional air protection guide is required where amblient temperature is lower than -5°C. *4 EER/COP and SEER/SCOP for M35-71 are measured at ESP 35Pa, for M100 at ESP 37Pa, for M125/140 at ESP 50Pa.

*5 SEER and SCOP are based on 2009/125/EC.Energy-related Products Directive and Regulation(EU) No208/2012.

PEAD-M JA(L) Indoor Unit Combinations Indoor unit combinations shown below are possible.

										Outd	oor Ui	nit Cap	pacity								
Indoor	Unit Combination				Fo	or Sing	gle						For	Twin			F	or Trip	le	For Qu	adruple
		35	50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power	Power Inverter (PUHZ-ZRP)		50x1	60x1	71x1	100x1	125x1	140x1	-	-	35x2	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	_	_	-	-	-	-	-	N	лSDD-	50TR-	E	MSDD-	50WR-E	MS	DT-111	R-E	MSDF-1	1111R-E
Standa	rd Inverter (PUHZ-P&SUZ)	35x1	50x1	60x1	71x1	100x1	125x1	140x1	-	-	-	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	_	-	_	_	-	-	-	-	-	-	MSI	DD-50	TR-E	MSDD-	50WR-E	MS	DT-111	R-E	MSDF-1	1111R-E

PEAD-M SERIES

	INVERIER		Optional	Lint Op	JOWII	Diagnosis	necal						
Туре								nverter Heat P	ump				
ndoor U	nit			PEAD- M35JA(L)	PEAD- M50JA(L)	PEAD- M60JA(L)	PEAD- M71JA(L)	PEAD-M	100JA(L)	PEAD-M	125JA(L)	PEAD-M	140JA(L)
Outdoor	Unit			PUHZ- ZRP35VKA2	PUHZ- ZRP50VKA2	PUHZ- ZRP60VHA2	PUHZ- ZRP71VHA2	PUHZ- ZRP100VKA3	PUHZ- ZRP100YKA3	PUHZ- ZRP125VKA3	PUHZ- ZRP125YKA3	PUHZ- ZRP140VKA3	PUHZ- ZRP140YK
Refrigera	int							R41	0A*1				
ower	Source							Outdoor po	wer supply				
Supply	Outdoor (V/Phase	/Hz)					VKA • VH	IA:230 / Single /	50, YKA:400 / 1	Γhree / 50			
Cooling	Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.5	12.5	13.4	13.4
	' '	Min - Max	kW	1.6 - 4.5	2.3 - 5.6	2.7 - 6.7	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0	5.5 - 14.0	6.2 - 15.3	6.2 - 15.
	Total Input	Rated	kW	0.89(0.87)	1.44 (1.42)	1.65 (1.63)	2.01 (1.99)	2.43 (2.41)	2.43 (2.41)	3.86 (3.83)	3.86 (3.83)	4.32 (4.29)	4.32 (4.2
	EER*4			-	-	-	-	-	-	3.24 (3.26)	3.24 (3.26)	3.10(3.12)	3.10(3.1
		EEL Rank		-	-	-	_	-	-	-	-	-	_
	Design Load		kW	3.6	5.0	6.1	7.1	9.5	9.5	-	-	-	_
	Annual Electricity	Consumption*2	kWh/a	221(205)	304(288)	355(340)	428(411)	554(543)	565(554)	-	-	-	
	SEER*4,*5	F		5.7(6.1)	5.7(6.0)	6.0(6.2)	5.8(6.0)	6.0(6.1)	5.8(6.0)	-	-	-	-
	0 ''	Energy Efficiency Class	kW	A+ (A++) 4.1	A+(A+) 6.0	A+(A++) 7.0	A+ (A+) 8.0	A+ (A++) 11.2	A+(A+) 11.2	14.0	14.0	16.0	16.0
leating Average	Capacity	Rated Min - Max	kW	1.6 - 5.2	2.5 - 7.3	2.8 - 8.2	3.5 - 10.2	4.5 - 14.0	4.5 - 14.0	5.0 - 16.0	5.0 - 16.0	5.7 - 18.0	5.7 - 18.
eason)	Total Input	Rated	kW	0.95	1.50	1.79	2.03	2.60	2.60	3.51	3.51	4.07	4.07
cuson,	COP*4	nateu	KVV	0.95	1.50	1.79	2.03	2.00	2.00	3.99	3.99	3.93	3.93
	COF	EEL Rank		_					_	3.33	3.33	- 3.33	- 3.33
	Design Load	LLL Halik	kW	2.4	3.8	4.4	4.9	7.8	7.8		_	-	_
		at reference design temperature	kW	2.4 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.9(-10°C)	7.8 (-10°C)	7.8 (-10°C)	_	_	_	_
	Dooiarou oupuorty	at bivalent temperature	kW	2.4 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.9(-10°C)	7.8 (-10°C)	7.8 (-10°C)	-	_	_	
		at operation limit temperature	kW	2.2 (-11°C)	3.7 (-11°C)	2.8(-20°C)	3.7(-20°C)	5.8 (-20°C)	5.8 (-20°C)	_	_	_	
	Back Up Heating C		kW	0	0	0	0	0	0	-	-	-	-
	Annual Electricity		kWh/a	839	1231	1513	1762	2627	2627	-	-	_	_
	SCOP*4,*5	•		4.0	4.3	4.1	3.9	4.2	4.2	-	-	-	-
		Energy Efficiency Class		A+	A+	A+	A	A+	A+	-	-	-	_
	ig Current (max)		Α	14.1	14.4	20.6	21.0	29.2	10.7	29.3	12.3	30.8	15.8
ndoor	Input [Cooling / Hea		kW					0.25 (0.23)/0.23					
nit	Operating Current		Α	1.07	1.39	1.62	1.97	2.65	2.65	2.76	2.76	2.78	2.78
	Dimensions <panel></panel>	$H \times W \times D$	mm		00-732		100-732			00-732			600-732
	Weight <panel></panel>		kg	26 (25)	27(26)	30(29)	30(29)	39(38)	39(38)	40(39)	40(39)	44(43)	44(43)
	Air Volume [Lo-Mic		m³/min	10.0-12.0-14.0	12.0-14.5-17.0	14.5-18.0-21.0	17.5-21.0-25.0	24.0-29.0-34.0		29.5-35.5-42.0	29.5-35.5-42.0	32.0-39.0-46.0	32.0-39.0-4
	External Static Pre		Pa dB(A)	23 - 27 - 30	26 - 31 - 35	25 - 29 - 33	26 - 30 - 34	35 / 50 / /0	29 - 34 - 38	33 - 36 - 40	33 - 36 - 40	34 - 38 - 43	34 - 38 -
	Sound Level (SPL) Sound Level (PWL		dB(A)	54	59	25 - 29 - 33 55	58	62	62	66	66	67	67
lutdoor	Dimensions	H×W×D	mm		09 - 300		- 330 (+30)	02	02) - 330 (+40)	67	6/
Init	Weight	III X VV X D	kg	43	1 46	70	70	116	123	1116	125	118	131
	Air Volume	Cooling	m³/min	45	45	55	55	110	110	120	120	120	120
	· voidine	Heating	m³/min	45	45	55	55	110	110	120	120	120	120
	Sound Level (SPL)	Cooling	dB(A)	44	44	47	47	49	49	50	50	50	50
		Heating	dB(A)	46	46	48	48	51	51	52	52	52	52
	Sound Level (PWL)	Cooling	dB(A)	65	65	67	67	69	69	70	70	70	70
	Operating Current		A	13.0	13.0	19.0	19.0	26.5	8.0	26.5	9.5	28.0	13.0
	Breaker Size		Α	16	16	25	25	32	16	32	16	40	16
xt.	Diameter	Liquid / Gas	mm	6.35 / 12.7	6.35 / 12.7	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.
iping	Max. Length	Out-In	m	50	50	50	50	75	75	75	75	75	75
	Max. Height	Out-In	m	30	30	30	30	30	30	30	30	30	30
	ed Operating Range	Cooling*3	°C	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +4
Outdoor		Heating	°C	-11 ~ +21	-11 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +2

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant divoud be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of COz, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.
*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.
*3 Optional air protection guide is required where ambient temperature is lower than -5°C. *4 EER/SCOP for M35-71 are measured at ESP 35Pa, for M100 at ESP 37Pa, for M125/140 at ESP 50Pa.
*5 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

PEA	D-M	SERIES
STAND	ARD INVE	RTER

Туре							lr	verter Heat P	ımp				
Indoor Ur	nit			PEAD- M35JA(L)	PEAD- M50JA(L)	PEAD- M60JA(L)	PEAD- M71JA(L)	PEAD-M	100JA(L)	PEAD-M	125JA(L)	PEAD-M	140JA(L)
Outdoor				SUZ-KA35VA6	SUZ-KA50VA6	SUZ-KA60VA6	SUZ-KA71VA6	PUHZ- P100VKA	PUHZ- P100YKA	PUHZ- P125VKA	PUHZ- P125YKA	PUHZ- P140VKA	PUHZ- P140YKA
Refrigera							•	R41					
Power	Source							Outdoor po					
Supply	Outdoor (V/Phase	/Hz)					VA • VKA	x:230 / Single / 5	50, YKA:400 / Th	ree / 50			
Cooling	Capacity	Rated	kW	3.6	4.9	5.7	7.1	9.4	9.4	12.1	12.1	13.6	13.6
-		Min - Max	kW	1.4 - 3.9	2.3 - 5.6	2.3 - 6.3	2.8 - 8.1	3.7 - 10.6	3.7 - 10.6	5.6 - 13.0	5.6 - 13.0	5.8 - 14.1	5.8 - 14.1
	Total Input	Rated	kW	1.050 (1.030)	1.480 (1.460)	1.670 (1.650)	2.080 (2.060)	2.98 (2.96)	2.98 (2.96)	4.15 (4.14)	4.15 (4.14)	5.21 (5.19)	5.21 (5.19)
	EER*4			-	-	-	-	3.17	3.17	2.91 (2.92)	2.91 (2.92)	2.61 (2.62)	2.61 (2.62)
		EEL Rank		_	-	_	_	-	-	-	-	_	-
	Design Load		kW	3.6	4.9	5.7	7.1	9.4	9.4	-	-	-	-
	Annual Electricity	Consumption*2	kWh/a	222 (210)	302 (290)	337 (325)	408 (396)	644 (627)	644 (627)	_	-	ı	-
	SEER*4,*5			5.6 (6.0)	5.6 (5.9)	5.9 (6.1)	6.1 (6.2)	5.1 (5.2)	5.1 (5.2)	-	-	_	-
		Energy Efficiency Class		A+ (A+)	A+ (A+)	A+ (A++)	A++ (A++)	A (A)	A (A)	-	-	-	-
Heating	Capacity	Rated	kW	4.1	5.9	7.0	8.0	11.2	11.2	13.5	13.5	15.0	15.0
(Average		Min - Max	kW	1.7 - 5.0	1.7 - 7.2	2.5 - 8.0	2.6 - 10.2	2.8 - 12.5	2.8 - 12.5	4.8 - 15.0	4.8 - 15.0	4.9 - 15.8	4.9 - 15.8
Season)	Total Input	Rated	kW	1.110	1.620	1.930	2.040	2.94	2.94	3.73	3.73	4.27	4.27
	COP*4			-	-	-	-	3.80	3.80	3.61	3.61	3.51	3.51
		EEL Rank			-					_	_		_
	Design Load		kW	2.8	4.4	4.5	6.0	8.0	8.0	-	-	-	_
	Declared Capacity	at reference design temperature	kW	2.5 (-10°C)	3.9 (-10°C)	4.1 (-10°C)	5.3 (-10°C)	6.0 (-10°C)	6.0 (-10°C)	-	-	-	_
		at bivalent temperature	kW	2.5 (-7°C)	3.9 (-7°C)	4.1 (-7°C)	5.3 (-7°C)	7.0 (-7°C)	7.0 (-7°C)	_	-	-	-
		at operation limit temperature	kW	2.5 (-10°C)	3.9 (-10°C)	4.1 (-10°C)	5.3 (-10°C)	4.5 (-15°C)	4.5 (-15°C)	-	-	-	_
			kW	0.3	0.5	0.5	0.7	2.0 2793	2.0 2793	-	-	-	_
	Back Up Heating Capacity Annual Electricity Consumption*2		kWh/a	980	1466	1569	2153			-	-	-	-
	SCOP*4,*5	Energy Efficiency Class		4.0 A ⁺	4.2 A+	4.0 A ⁺	3.9 A	4.0 A+	4.0 A+		===		
Onevetin	g Current (max)	Ellergy Efficiency Class	A	9.3	13.4	15.6	18.1	22.7	14.2	29.3	14.3	32.8	14.3
Indoor	Input [Cooling / Hea	-4:1 D-41	kW	0.09(0.07) / 0.07			0.17(0.15) / 0.15		0.25(0.23)/0.23	0.36(0.34)/0.34		0.39(0.37)/0.37	0.39(0.37)/0.37
Unit	Operating Current		A	1.07	1.39	1.62	1.97	2.65	2.65	2.76	2.76	2.78	2.78
Oiiit	Dimensions <panel></panel>	H × W × D	mm		00-732		00-732	2.00	250-14		2.70	250-16	
	Weight <panel></panel>	II X VV X D	kg	26 (25)	27 (26)	30 (29)	30 (29)	39 (38)	39 (38)	40 (39)	40 (39)	44 (43)	44 (43)
	Air Volume [Lo-Mic	-Hil	m³/min				17.5-21.0-25.0						32.0-39.0-46.0
	External Static Pre		Pa	10.0 12.0 14.0	12.0 14.0 17.0	14.0 10.0 21.0		50 / 70 / 100 /		20.0 00.0 42.0	20.0 00.0 42.0	02.0 00.0 40.0	02.0 00.0 40.0
	Sound Level (SPL)		dB(A)	23 - 27 - 30	26 - 31 - 35	25 - 29 - 33	26 - 30 - 34	29 - 34 - 38	29 - 34 - 38	33 - 36 - 40	33 - 36 - 40	34 - 38 - 43	34 - 38 - 43
	Sound Level (PWL		dB(A)	54	59	55	58	62	62	66	66	67	67
Outdoor	Dimensions	H×W×D	mm	550-800-285		880-840-330				981-10	50-330		
Unit	Weight	<u> </u>	kg	35	54	50	53	76	78	84	85	84	85
	Air Volume	Cooling	m³/min	36.3	44.6	40.9	50.1	79	79	86	86	86	86
		Heating	m³/min	34.8	44.6	49.2	48.2	79	79	92	92	92	92
	Sound Level (SPL)	Cooling	dB(A)	49	52	55	55	51	51	54	54	56	56
		Heating	dB(A)	50	52	55	55	54	54	56	56	57	57
	Sound Level (PWL)	Cooling	dB(A)	62	65	65	69	70	70	72	72	75	75
	Operating Current	(max)	Α	8.2	12.0	14.0	16.1	20.0	11.5	26.5	11.5	30.0	11.5
	Breaker Size		Α	10	20	20	20	32	16	32	16	40	16
Ext.	Diameter	Liquid / Gas	mm	6.35 / 9.52	6.35 / 12.7	6.35 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
Piping	Max. Length	Out-In	m	20	30	30	30	50	50	50	50	50	50
	Max. Height	Out-In	m	12	30	30	30	30	30	30	30	30	30
	ed Operating Range	Cooling*3	°C	-10 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46
[Outdoor		Heating	°C	-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24	-15 ~ +21	-15 ~ +21	-15 ~ +21	-15 ~ +21	-15 ~ +21	-15 ~ +21

Heating *1 Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP; I leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

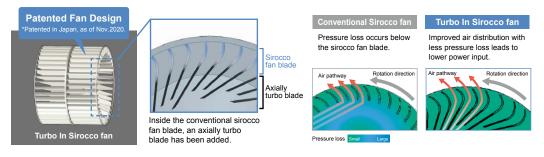
*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 Optional air protection guide is required where ambient temperature is lower than -5°C. *4 EER/COP and SEER/SCOP for M35-71 are measured at ESP 35Pa, for M100 at ESP 37Pa, for M125/140 at ESP 50Pa.

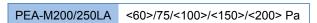
*5 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

PEA

The PEA Series is a large capacity ceiling-concealed type indoor units which are visually discreet blending into various environments. The new R32 refrigerant lineup realizes improved energy efficiency with a patented fan called a Turbo In Sirocco fan. A wider option of external static pressure up to 200Pa allows authentic ducted air-conditioning with an elegant interior layout.

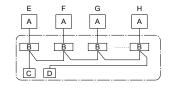

Improved Energy Efficiency

Introduction of new R32 refrigerant with newly designed fan reduces energy consumption and have resulted in higher energy savings for all capacity ranges.


Low input with New Fan Design

The new PEA series applies a newly designed fan; a Turbo In Sirocco fan which realizes high efficiency with a lower power input. The new design is Mitsubishi Electric's patented technology with a combination of turbo fan inside the sirocco fan.

Wide range of external static pressure allows flexible duct design


200Pa setting is newly added enabling total of five static pressure level. The ability to select additional static pressure enables long duct and more freedom in design.

The factory setting of external static pressure is shown without brackets (< >). Refer to "Fan characteristics curves" according to the external static pressure, in the DATA BOOK for the usable range of airflow rate

PAR-40MAA Group Control

The PAR-40MAA remote controller can control up to 16 systems as a group, and is ideal for supporting the integrated management of building air conditioners.

- Indoor unit Main remote controller
- Subordinate remote controller Standard (Refrigerant address = 00) Refrigerant address = 01 Refrigerant address = 02

- Refrigerant address = 15

PEA-M SERIES	Jica-	Vector Sine Wave	DC Scroll	Rare Earth Magnet	DC Fan Motor	Vector-Wave		Grooved Piping	Optional
I LA-IVI SERIES		Group	M-NET	Wi-Fi 1)) Interface	ning-free,	Pump	Flare	4	Failur
POWER INVERTER		Control	connection	Interface	pipe reuse	Down	connection	Self Diagnosis	Reca

Type				Inverter Heat Pump							
Indoor Un	it			PEA-M200LA	PEA-M250LA						
Outdoor l	Jnit			PUZ-ZM200YKA	PUZ-ZM250YKA						
Refrigerar	nt			R3	2*1						
	Source				ower supply						
Supply	Outdoor (V/Phase	e/Hz)		400 / TI	nree / 50						
Cooling	Capacity	Rated	kW	19.0	22.0						
		Min - Max	kW	9.2 - 22.4	9.9 - 27.0						
	Total Input	Rated	kW	5.757	7.213						
	EER			3.30	3.05						
		EEL Rank		-	-						
Heating	Capacity	Rated	kW	22.4	27.0						
(Average Season)		Min - Max	kW	7.1 - 25.0	7.3 - 31.0						
Season)	Total Input	Rated	kW	6.400	7.941						
	COP			3.50	3.40						
		EEL Rank		-	-						
	g Current (max)			25.7	25.9						
Indoor	Input [Cooling / He	0.	kW	0.35 / 0.35	0.53 / 0.53						
Unit	Operating Curren		А	3.1	3.4						
	Dimensions	H x W x D	mm	470 - 13	70 - 1120						
	Weight		kg		37						
	Air Volume [Lo-M		m³/min	42 - 51 - 60 (60Pa - 150Pa) 42 - 51 - 55 (200Pa)	50 - 61 - 72 (60Pa - 100Pa) 45 - 55 - 65 (150Pa) 45 - 50 - 55 (200Pa)						
	External Static Pr		Pa		0) / (150) / (200)						
	Sound Level (SPL		dB(A)	35 - 40 - 43	38 - 43 - 47						
	Sound Level (PWI		dB(A)	63 - 64 - 64	67 - 67 - 68						
	Dimensions	H x W x D	mm) - 330 (+40)						
Unit	Weight		kg	137	138						
	Air Volume	Cooling	m³/min	140	140						
		Heating	m³/min	140	140						
	Sound Level (SPL		dB(A)	59	59						
		Heating	dB(A)	62	62						
	Sound Level (PWL		dB(A)	77	77						
	Operating Curren	t (max)	A	22.5	22.5						
	Breaker Size		А	32	32						
Ext.	Diameter	Liquid / Gas	mm	9.52 / 25.4	12.7 / 25.4						
Piping	Max. Length	Out-In	m	100	100						
	Max. Height	Out-In	m	30	30						
	ed Operating Range	Cooling*2	℃	-15 ~ +46	-15 ~ +46						
[Outdoor]		Heating	℃	-20 ~ +21	-20 ~ +21						

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.
*2 Optional air protection guide is required where ambient temperature is lower than -5°C.

PEA-M SERIES
STANDARD INVERTER

SIANUA	KU INVEKIEK		Optional Optional	Optional Optional	
Туре				Inverte	r Heat Pump
Indoor Ur	nit			PEA-M200LA	PEA-M250LA
Outdoor	Unit			PUZ-M200YKA	PUZ-M250YKA
Refrigera	nt				R32*1
Power	Source			Separate	power supply
Supply	Outdoor (V/Phas	e/Hz)		400 /	Three / 50
Cooling	Capacity	Rated	kW	19.0	22.0
		Min - Max	kW	9.2 - 22.4	9.9 - 27.0
	Total Input	Rated	kW	6.089	7.333
	EER		·	3.12	3.00
		EEL Rank		-	-
Heating		Rated	kW	22.4	27.0
(Average	•	Min - Max	kW	6.8 - 25.0	7.3 - 31.0
Season)	Total Input	Rated	kW	6.588	8.181
	СОР		·	3.40	3.30
		EEL Rank		-	-
Operatin	g Current (max)			25.7	25.9
Indoor	Input [Cooling / He	eating] Rated	kW	0.35 / 0.35	0.53 / 0.53
Unit	Operating Curren	nt (max)	A	3.1	3.4
	Dimensions	H x W x D	mm	470 -	1370 - 1120
	Weight	· ·	kg		87
	Air Volume [Lo-M	lid-Hi]	m³/min	42 - 51 - 60 (60Pa - 150Pa) 42 - 51 - 55 (200Pa)	50 - 61 - 72 (60Pa - 100Pa) 45 - 55 - 65 (150Pa) 45 - 50 - 55 (200Pa)
	External Static Pr	ressure	Pa	(60) / 75 / (100) / (150) / (200)
	Sound Level (SPL	.) [Lo-Mid-Hi]	dB(A)	35 - 40 - 43	38 - 43 - 47
	Sound Level (PW	L)	dB(A)	63 - 64 - 64	67 - 67 - 68
	Dimensions	H x W x D	mm	1338 - 10	050 - 330 (+40)
Unit	Weight		kg	129	138
	Air Volume	Cooling	m³/min	140	140
		Heating	m³/min	140	140
	Sound Level (SPL	.) Cooling	dB(A)	58	59
		Heating	dB(A)	60	62
	Sound Level (PWL	-) Cooling	dB(A)	78	77
	Operating Curren	nt (max)	A	22.5	22.5
	Breaker Size		A	32	
Ext.	Diameter	Liquid / Gas	mm	9.52 / 25.4	12.7 / 25.4
Piping	Max. Length	Out-In	m	70	70
	Max. Height	Out-In	m	30	30
	ed Operating Range	Cooling*2	°C	-15 ~ +46	-15 ~ +46
[Outdoor]]	Heating	℃	-20 ~ +21	-20 ~ +21

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.
*2 Optional air protection guide is required where ambient temperature is lower than -5°C.

J			
	_	ī	

Туре				Inver	ter Heat Pump					
Indoor U	nit	·		PEA-M200LA	PEA-M250LA					
Outdoor	Unit			PUHZ-ZRP200YKA3	PUHZ-ZRP250YKA3					
Refrigera	int				R410A*1					
Power	Source			Separa	te power supply					
Supply	Outdoor (V/Phas	e/Hz)		400) / Three / 50					
Cooling	Capacity	Rated	kW	19.0	22.0					
		Min - Max	kW	9.0 - 22.4	11.2 - 27.0					
	Total Input	Rated	kW	5.937	7.971					
	EER	<u> </u>		3.20	2.76					
		EEL Rank		-	-					
Heating	Capacity	Rated	kW	22.4	27.0					
(Average	•	Min - Max	kW	9.5 -25.0	12.5 - 31.0					
Season)	Total Input	Rated	kW	6.530	8.181					
	СОР	<u> </u>	.	3.43	3.30					
		EEL Rank		-	-					
Operatir	ng Current (max)			22.2	24.4					
Indoor	Input [Cooling / He	eating] Rated	kW	0.35 / 0.35	0.53 / 0.53					
Unit	Operating Currer	nt (max)	A	3.1	3.4					
	Dimensions	HxWxD	mm	470	- 1370 - 1120					
	Weight	<u>'</u>	kg		87					
	Air Volume [Lo-M	lid-Hi]	m³/min	42 - 51 - 60 (60Pa - 150Pa) 42 - 51 - 55 (200Pa)	50 - 61 - 72 (60Pa - 100Pa) 45 - 55 - 65 (150Pa) 45 - 50 - 55 (200Pa					
	External Static Pr	ressure	Pa	(60) / 75 /	(100) / (150) / (200)					
	Sound Level (SPL	.) [Lo-Mid-Hi]	dB(A)	35 - 40 - 43	38 - 43 - 47					
	Sound Level (PW	L)	dB(A)	63 - 64 - 64	67 - 67 - 68					
	Dimensions	H x W x D	mm	1338 -	1050 - 330 (+40)					
Unit	Weight	•	kg		135					
	Air Volume	Cooling	m³/min		140					
		Heating	m³/min		140					
	Sound Level (SPL	.) Cooling	dB(A)		59					
		Heating	dB(A)		62					
	Sound Level (PWL	.) Cooling	dB(A)		77					
	Operating Curren	nt (max)	A	19.0	21.0					
	Breaker Size		A		32					
Ext.	Diameter	Liquid / Gas	mm	9.52 / 25.4	12.7 / 25.4					
Piping	Max. Length	Out-In	m		100					
	Max. Height	Out-In	m		30					
	ed Operating Range	Cooling*2	°C	-	15 ~ +46					
[Outdoor]	Heating	°C	-20 ~ +21						

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.
*2 Optional air protection guide is required where ambient temperature is lower than -5°C.

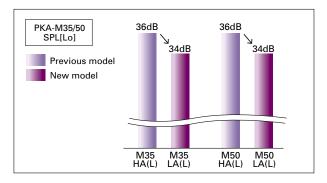
STANDA	RD INVERTER	Connectio	Interface	Down connection Self Diagnosis Recall	
Type				Inverter	Heat Pump
Indoor U	nit			PEA-M200LA	PEA-M250LA
Outdoor	Jnit			PUHZ-P200YKA3	PUHZ-P250YKA3
Refrigera	nt			R4	10A*1
Power	Source			Separate p	power supply
Supply	Outdoor (V/Phase	e/Hz)		400 / T	hree / 50
Cooling	Capacity	Rated	kW	19.0	22.0
		Min - Max	kW	9.0 - 22.4	11.2 - 27.0
	Total Input	Rated	kW	6.188	8.058
	EER			3.07	2.73
		EEL Rank		-	-
Heating	Capacity	Rated	kW	22.4	27.0
(Average		Min - Max	kW	9.5 - 25.0	12.5 - 31.0
Season)	Total Input	Rated	kW	6.706	8.437
	СОР			3.34	3.20
		EEL Rank		-	-
Operatin	g Current (max)			22.2	24.4
Indoor	Input [Cooling / He	eating] Rated	kW	0.35 / 0.35	0.53 / 0.53
Unit	Operating Curren	t (max)	A	3.1	3.4
	Dimensions	H x W x D	mm	470 - 13	370 - 1120
	Weight	<u>'</u>	kg		87
	Air Volume [Lo-M	id-Hi]	m³/min	42 - 51 - 60 (60Pa - 150Pa) 42 - 51 - 55 (200Pa)	50 - 61 - 72 (60Pa - 100Pa) 45 - 55 - 65 (150Pa) 45 - 50 - 55 (200Pa)
	External Static Pr	essure	Pa	(60) / 75 / (10	0) / (150) / (200)
	Sound Level (SPL		dB(A)	35 - 40 - 43	38 - 43 - 47
	Sound Level (PWI	L)	dB(A)	63 - 64 - 64	67 - 67 - 68
	Dimensions	H x W x D	mm	1338 - 105	0 - 330 (+40)
Unit	Weight		kg	127	135
	Air Volume	Cooling	m³/min	140	140
		Heating	m³/min	140	140
	Sound Level (SPL) Cooling	dB(A)	58	59
		Heating	dB(A)	60	62
	Sound Level (PWL) Cooling	dB(A)	78	77
	Operating Curren	it (max)	A	19.0	21.0
	Breaker Size		A	32	32
Ext.	Diameter	Liquid / Gas	mm	9.52 / 25.4	12.7 / 25.4
Piping	Max. Length	Out-In	m	70	70
	Max. Height	Out-In	m	30	30
	ed Operating Range	Cooling*2	°C	-15 ~ +46	-15 ~ +46
[Outdoor		Heating	°C	-20 ~ +21	-20 ~ +21

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.
*2 Optional air protection guide is required where ambient temperature is lower than -5°C.

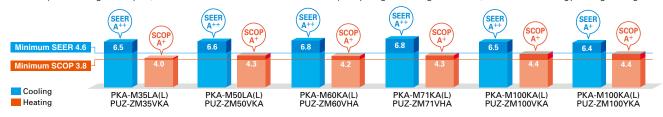
PKA SERIES

The compact, wall-mounted indoor units offer the convenience of simple installation, and a large product line-up (M35-M100 models) ensures a best-match solution. Designed for highly efficient energy savings, the PKA Series is the answer to your air conditioning needs.

New Design (M35-50)


A sharp and simple form that combines beauty and function. The simple square design harmonizes beautifully with the straight lines created by the intersection of the walls, floor and ceiling of the space, leading to a better quality of space. Also adopted a new white body color. It will make your life and space beautiful and comfortable without disturbing the atmosphere of the room. In addition, we realized miniaturization of conventional model. It contributes to space saving of installation area and giving room to room space.

Quietness (M35-50)


The noise level has been significantly reduced compared to the conventional model by reviewing the unit structure and improving the line flow fan.

ErP Lot 10 Compliant with High Energy-efficiency Achieving SEER/SCOP Rank A, A+ and A++

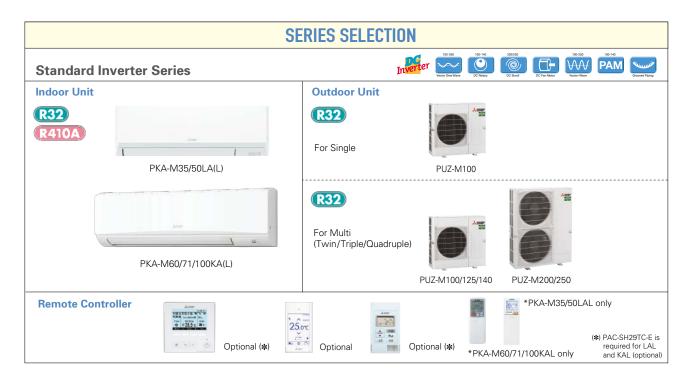
Highly efficient indoor unit heat exchangers and and newly designed power inverters (PUHZ-ZM) contribute to an amazing reduction in electricity consumption throughout a year, and have resulted in models in the full-capacity range attaining the rank A, A+ and A++ energy savings rating.

Airflow distributions

0

Airflow Control - Horizontal Airflow - (M35-50)

Significantly improved airflow control to achieve horizontal airflow. This reduces the feeling of draft even on a wall-mounted model, and air conditioning the indoor space firmly.


Floor distance (m)

2

PKA-M LA(L)/KA(L) Indoor Unit Combinations Indoor unit combinations shown below are possible.

	Outdoor Unit Capacity																				
Indoor Unit Combination		For Single									For Twin					For Triple			For Quadruple		
		35	50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power Inverter (PUHZ-ZRP)		35x1	50x1	60x1	71x1	100x1	-	-	-	-	35x2	50x2	60x2	71x2	100x2	-	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	-	-	-	-	-	- MSDD-50TR2-E MSDD- 50WR2-E - MSDT-111		1R3-E MSDF- 1111R2-								

PKA-M LA/KA Indoor Unit Combinations Indoor unit combinations shown below are possible.

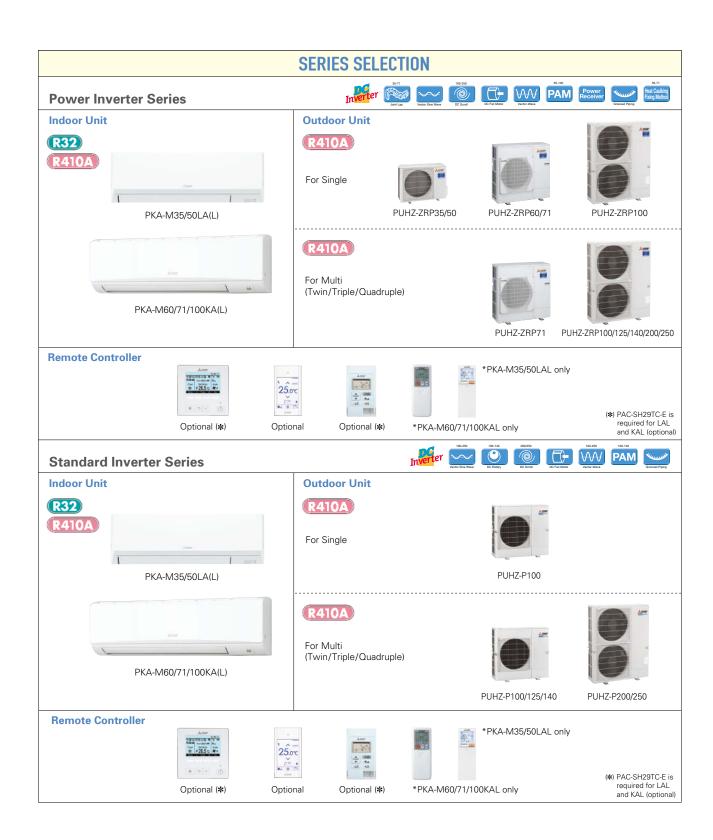
		Outdoor Unit Capacity																			
Indoor	Unit Combination	For Single									For Twin					For Triple			For Quadruple		
			50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Standa	rd Inverter (PUHZ-P)	-	-	-	-	100x1	-	-	-	-	-	50x2	60x2	71x2	100x2	-	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	-	-		-	-	MSDD-50TR2-E MSDD- 50WR2-E -		MSE	MSDT-111R3-E			MSDF- 1111R2-E				

PKA-M SERIES

Wi-Fi)) Interface	COMPO	Cleaning-free, pipe reuse	Wiring Reuse	Drain Lift Up	Pump Down	Flare connection	Self Diagnosis	Failure Recall

T					•	1			
Туре	•					Inverter H			
Indoor U				PKA-M35LA(L)	PKA-M50LA(L)	PKA-M60KA(L)	PKA-M71KA(L)	PKA-M1	
Dutdoor				PUZ-ZM35VKA	PUZ-ZM50VKA	PUZ-ZM60VHA	PUZ-ZM71VHA	PUZ-ZM100VKA	PUZ-ZM100YKA
Refrigera							2*1		
ower	Source						ower supply		
Supply	Outdoor (V/Phase	e/Hz)				VKA · VHA:230 / Single /	50, YKA:400 / Three / 50		
Cooling	Capacity	Rated	kW	3.6	4.6	6.1	7.1	9.5	9.5
		Min - Max	kW	1.6 - 4.5	2.3 - 5.6	2.7 - 6.7	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4
	Total Input	Rated	kW	0.850	1.230	1.560	1.863	2.405	2.405
	EER	•		4.20	3.71	3.91	3.81	3.95	3.95
		EEL Rank		_	-	-	-	-	-
	Design Load	•	kW	3.6	4.6	6.1	7.1	9.5	9.5
	Annual Electricity	Consumption*2	kWh/a	194	244	313	364	508	519
	SEER*4	•		6.5	6.6	6.8	6.8	6.5	6.4
		Energy Efficiency Clas	s	A++	A++	A++	A++	A++	A++
eating	Capacity	Rated	kW	4.1	5.0	7.0	8.0	11.2	11.2
verage		Min - Max	kW	1.6 - 5.2	2.5 - 6.6	2.8 - 8.2	3.5 - 10.2	4.5 - 14.0	4.5 - 14.0
eason)	Total Input	Rated	kW	1.040	1.340	1.732	2.116	3.102	3.102
	COP			3.94	3.72	4.04	3.78	3.61	3.61
		EEL Rank		-	_	ı	-	-	-
	Design Load		kW	2.4	3.3	4.4	4.7	7.8	7.8
	Declared Capacity	at reference design temperatur		2.4 (-10°C)	3.3 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)
		at bivalent temperature	kW	2.4 (-10°C)	3.3 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)
		at operation limit temperature		2.2 (-11°C)	3.2 (-11°C)	2.8 (-20°C)	3.5 (-20°C)	5.8 (-20°C)	5.8 (-20°C)
	Back Up Heating (kW	0	0	0	0	0	0
	Annual Electricity	Consumption*2	kWh/a	829	1074	1460	1523	2472	2472
	SCOP*4			4.0	4.3	4.2	4.3	4.4	4.4
		Energy Efficiency Clas		A+	Α+	Α+	A ⁺	A ⁺	Α+
	ng Current (max)		A	13.4	13.4	19.4	19.4	27.1	8.6
door	Input	Rated	kW	0.04 / 0.03	0.04 / 0.03	0.06 / 0.05	0.06 / 0.05	0.08 / 0.07	0.08 / 0.07
nit	Operating Current		A	0.35	0.35	0.43	0.43	0.57	0.57
	Dimensions <panel></panel>	[H×W×D	mm	299 - 89			365 - 11		
	Weight <panel></panel>		kg	12.6	12.6	21	21	21	21
	Air Volume [Lo-Mi		m³/min	7.5 - 8.2 - 9.2 - 10.9	7.5 - 8.2 - 9.2- 10.9	18 - 20 - 22	18 - 20 - 22	20 - 23 - 26	20 - 23 - 26
	Sound Level (SPL)		dB(A)	34 - 37 - 40 - 43	34 - 37 - 40 - 43	39 - 42 - 45 64	39 - 42 - 45	41 - 45 - 49 65	41 - 45 - 49 65
	Sound Level (PWL		dB(A)	60	60		64		
utdoor nit	Dimensions Weight	H × W × D	mm	630 - 80			- 330 (+25) 70	1338 - 1050 116) - 330 (+40) 123
1111		I Castian	kg m³/min	46 45	46 45	70 55	70 55	110	110
	Air Volume	Cooling		45 45	45 45	55 55	55 55	110	110
	Sound Level (SPL)	Heating Cooling	m³/min dB(A)	45	45 44	47	47	49	49
	Sound Level (SPL)	Heating	dB(A)	44 46	44	47	47	49 51	49 51
	Sound Level (PWL)		dB(A)	46 65	46 65	49 67	49 67	69	69
	Operating Current		A A	13.0	13.0	19.0	19.0	26.5	8.0
	Breaker Size	(IIIdX)	A	16	16	25	25	32	16
xt.	Diameter	Liquid / Gas	mm	6.35 / 12.7	6.35 / 12.7	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
	Max. Length	Out-In	m	50	50	9.52 / 15.88 55	9.52 / 15.88	100	100
iping	Max. Height	Out-In	m	30	30	30	30	30	30
Luaranta	ed Operating Range		°C	30 15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46
Dutdoor	eu Operating Range		*C	-15 ~ +46 -11 ~ +21	-15 ~ +46 -11 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21
JULUUUI	1	Heating	ا.ر	-11 ~ +21	-II ~ +ZI	-2U ~ +2 I	-2U ~ +2 I	-2U ~ +21	-2U ~ +2I

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.
*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.
*3 Optional air protection guide is required where ambient temperature is lower than -5°C.
*4 SEER and SCOP are based on 2009/125/EC.Energy-related Products Directive and Regulation(EU) No206/2012.



Supply	Jnit nt Source Outdoor (V/Phase Capacity				
frigerar wer pply oling	nt Source Outdoor (V/Phase Capacity			PKA-M10	00KA(L)
wer ipply ooling	Source Outdoor (V/Phase Capacity			PUZ-M100VKA	PUZ-M100YKA
pply oling	Outdoor (V/Phase Capacity			R32	*1
oling	Capacity			Outdoor pow	ver supply
		/Hz)		230 / Single / 50	400 / Three /50
	T	Rated	kW	9.5	9.5
	T	Min - Max	kW	4.0 - 10.6	4.0 - 10.6
	Total Input	Rated	kW	2.94	2.94
	EER			3.23	3.23
		EEL Rank		-	-
	Design Load		kW	9.5	9.5
	Annual Electricity	Consumption*2	kWh/a	572	572
J	SEER*4			5.8	5.8
		Energy Efficiency Class		A ⁺	A+
	Capacity	Rated	kW	11.2	11.2
erage		Min - Max	kW	2.8 - 12.5	2.8 - 12.5
	Total Input	Rated	kW	3.28	3.28
	COP			3.41	3.41
		EEL Rank		-	<u>-</u>
	Design Load		kW	8.0	8.0
	Declared Capacity	at reference design temperature	kW	6.0 (-10°C)	6.0 (-10°C)
		at bivalent temperature	kW	7.0 (–7°C)	7.0 (-7°C)
		at operation limit temperature	kW	4.5 (-15°C)	4.5 (–15°C)
	Back Up Heating	Capacity	kW	2.0	2.0
	Annual Electricity	Consumption*2	kWh/a	2797	2797
	SCOP*4			4.0	4.0
		Energy Efficiency Class		A+	A+
	g Current (max)	In	A	20.6	12.1
door		Rated	kW A	0.08 0.57	0.08
	Input	7			
nit	Operating Current				0.57
nit	Operating Current Dimensions <panel></panel>		mm	365 - 1170 - 295	365 - 1170 - 295
nit	Operating Current Dimensions <panel> Weight <panel></panel></panel>	H × W × D	mm kg	365 - 1170 - 295 21	365 - 1170 - 295 21
nit	Operating Current Dimensions <panel> Weight <panel> Air Volume [Lo-Mi</panel></panel>	H × W × D d-Hi]	mm kg m³/min	365 - 1170 - 295 21 20 - 23 - 26	365 - 1170 - 295 21 20 - 23 - 26
nit	Operating Current Dimensions <panel> Weight <panel> Air Volume [Lo-Mi Sound Level (SPL</panel></panel>	H × W × D d-Hi] [Lo-Mid-Hi]	mm kg m³/min dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49
nit	Operating Current Dimensions <panel> Weight <panel> Air Volume [Lo-Missound Level (SPL Sound Level (PWIssound (PWIssound Level (PWIssound Level (PWIssound (PWIssound Level (PWIssound (PWIs</panel></panel>	H × W × D d-Hi] [Lo-Mid-Hi]	mm kg m³/min dB(A) dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65
nit	Operating Current Dimensions <panel> Weight <panel> Air Volume [Lo-Mi Sound Level (SPL Sound Level (PWI Dimensions</panel></panel>	H × W × D d-Hi] [Lo-Mid-Hi]	mm kg m³/min dB(A) dB(A) mm	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40)
utdoor nit	Operating Current Dimensions <panel> Weight <panel> Air Volume [Lo-Mi Sound Level (PWI Sound Level (PWI Dimensions Weight</panel></panel>	H × W × D J-Hi] [Lo-Mid-Hi] H × W × D	mm kg m³/min dB(A) dB(A) mm	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78
itdoor nit	Operating Current Dimensions <panel> Weight <panel> Air Volume [Lo-Mi Sound Level (SPL Sound Level (PWI Dimensions</panel></panel>	H × W × D d-Hi] [Lo-Mid-Hi] H × W × D Cooling	mm kg m³/min dB(A) dB(A) mm kg m³/min	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79.0	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 79.0
itdoor iit	Operating Current Dimensions <panel> Weight <panel> Air Volume Lo-Mi Sound Level (SPL Sound Level (PWI Dimensions Weight Air Volume</panel></panel>	H × W × D 3-Hi] [Lo-Mid-Hi]] H × W × D Cooling Heating	mm kg m³/min dB(A) dB(A) mm kg m³/min m³/min	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79.0 79.0	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 79.0 79.0
itdoor nit	Operating Current Dimensions <panel> Weight <panel> Air Volume [Lo-Mi Sound Level (PWI Sound Level (PWI Dimensions Weight</panel></panel>	H × W × D	mm kg m³/min dB(A) dB(A) mm kg m³/min m³/min dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79.0 79.0 51	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 79.0 79.0 51
ıtdoor nit	Operating Current Dimensions «Panel» Weight «Panel» Air Volume [Lo-M: Sound Level (SPL Sound Level (PWI Dimensions Weight Air Volume Sound Level (SPL)	H x W x D 3-Hi] (Lo-Mid-Hi] 3 1 1 1 1 1 1 1 1 1	mm kg m³/min dB(A) dB(A) mm kg m³/min dB(A) dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79.0 79.0 51	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 79.0 79.0 51 54
utdoor nit	Operating Current Dimensions <panels (pwi="" (spl)="" (spl)<="" <panels="" [lo-mi="" air="" dimensions="" level="" sound="" td="" volume="" weight=""><td> H x W x D </td><td>mm kg m³/min dB(A) dB(A) mm kg m³/min dB(A) dB(A)</td><td>365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79 0 79 0 79 0 79 1 51 54 70</td><td>365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 78 79.0 79.0 51 51 54 770</td></panels>	H x W x D	mm kg m³/min dB(A) dB(A) mm kg m³/min dB(A) dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79 0 79 0 79 0 79 1 51 54 70	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 78 79.0 79.0 51 51 54 770
utdoor nit	Operating Current Dimensions «Panel» Weight «Panel» Air Volume (Lo-Ni Sound Level (PWI Dimensions Weight Air Volume Sound Level (SPL) Sound Level (SPL) Sound Level (PWI Operating Current	H x W x D	mm kg m³/min dB(A) dB(A) mm kg m³/min dB(A) dB(A) dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79.0 79.0 51 54 70 20.0	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 79.0 79.0 51 54 70 11.5
utdoor nit	Operating Curren Dimensions <panels (pwi="" (pwl)="" (spl)="" <panels="" [lo-mi="" air="" curren="" dimensions="" level="" operating="" size<="" sound="" td="" volume="" weight=""><td> H x W x D 5-Hi] (Lo-Mid-Hi] 0 1 1 1 1 1 1 1 1 1</td><td>mm kg m³/min dB(A) dB(A) mm kg m³/min m³/min dB(A) dB(A) dB(A)</td><td>365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 79.0 79.0 51 54 770 20.0 32</td><td>365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 8 79.0 79.0 51 54 70 11.5</td></panels>	H x W x D 5-Hi] (Lo-Mid-Hi] 0 1 1 1 1 1 1 1 1 1	mm kg m³/min dB(A) dB(A) mm kg m³/min m³/min dB(A) dB(A) dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 79.0 79.0 51 54 770 20.0 32	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 8 79.0 79.0 51 54 70 11.5
utdoor nit	Operating Current Dimensions - Sanels Weight - Panels Air Volume Lo-Mi Sound Level (SPL Sound Level (PWI Dimensions Weight Air Volume Sound Level (PVI Operating Current Breaker Size Diameter	H x W x D 3-Hi] (Lo-Mid-Hi] 3 1 1 1 1 1 1 1 1 1	mm kg m³/min dB(A) dB(A) mm kg m³/min dB(A) dB(A) dB(A) dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79.0 79.0 79.0 51 51 54 70 20.0 32 9.52 / 15 88	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 790 790 790 151 54 70 11.5 16
utdoor nit	Operating Curren Dimensions <panels (pwl)="" (spl)="" <panels="" air="" breaker="" curren="" diameter="" dimensions="" length<="" level="" lo-mi="" max.="" operating="" size="" sound="" td="" volume="" weight="" =""><td> H x W x D 1-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi) (Lo-Mid-</td><td>mm kg m³/min dB(A) dB(A) mskg m³/min dB(A) dB(A) dB(A) dB(A)</td><td>365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79.0 79.0 51 54 70 20.0 32 9.52 / 15.88 55</td><td>365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 79.0 79.0 51 54 70 11.5 16 9.52 / 15.88 55</td></panels>	H x W x D 1-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi] (Lo-Mid-Hi) (Lo-Mid-	mm kg m³/min dB(A) dB(A) mskg m³/min dB(A) dB(A) dB(A) dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79.0 79.0 51 54 70 20.0 32 9.52 / 15.88 55	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 79.0 79.0 51 54 70 11.5 16 9.52 / 15.88 55
utdoor nit t. ping	Operating Current Dimensions - Sanels Weight - Panels Air Volume Lo-Mi Sound Level (SPL Sound Level (PWI Dimensions Weight Air Volume Sound Level (PVI Operating Current Breaker Size Diameter	H x W x D S-Hi] (Lo-Mid-Hi] S-Hi] (Lo-Mid-Hi] S-Hi] H x W x D Cooling Heating Cooling Heating Cooling (max) Liquid / Gas Out-In Out-In Out-In Out-In Couling Couling	mm kg m³/min dB(A) dB(A) mm kg m³/min dB(A) dB(A) dB(A) dB(A)	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 76 79.0 79.0 79.0 51 51 54 70 20.0 32 9.52 / 15 88	365 - 1170 - 295 21 20 - 23 - 26 41 - 45 - 49 65 981 - 1050 - 330 (+40) 78 790 790 790 151 54 70 11.5 16

PKA-M LA/KA Indoor Unit Combinations Indoor unit combinations shown below are possible.

										Outd	oor U	nit Ca _l	pacity								
Indoor	Unit Combination				Fo	or Sing	gle						For	Twin			Fo	or Trip	le	For Qu	adruple
			50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power	Power Inverter (PUHZ-ZRP)		50x1	60x1	71x1	100x1	-	-	-	-	35x2	50x2	60x2	71x2	100x2	-	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	-	-	-	-	-	N	MSDD-	50TR-	E	MSDD- 50WR-E	-	MS	DT-111	IR-E	MSDF-1	1111R-E
Standa	rd Inverter (PUHZ-P)	-	-	-	-	100x1	-	-	-	-	-	50x2	60x2	71x2	100x2	-	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-		_	-	-	-	-	MSI	DD-50	ΓR-E	MSDD- 50WR-E	-	MS	DT-111	IR-E	MSDF-1	1111R-E

PKA-M SERIES

Туре						Inverter F	eat Pump		
ndoor Ur	nit			PKA-M35LA(L)	PKA-M50LA(L)	PKA-M60KA(L)	PKA-M71KA(L)	PKA-M1	00KA(L)
Outdoor	Unit			PUHZ-ZRP35VKA2	PUHZ-ZRP50VKA2	PUHZ-ZRP60VHA2	PUHZ-ZRP71VHA2	PUHZ-ZRP100VKA3	PUHZ-ZRP100YKA
efrigera	nt					R41	0A*1		
ower	Source					Outdoor po	ower supply		
upply	Outdoor (V/Phase	/Hz)				VKA · VHA:230 / Single /	50, YKA:400 / Three / 50		
ooling	Capacity	Rated	kW	3.6	4.6	6.1	7.1	9.5	9.5
		Min - Max	kW	1.6 - 4.5	2.3 - 5.4	2.7 - 6.7	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4
	Total Input	Rated	kW	0.940	1.424	1.60	1.80	2.40	2.40
	EER			3.80	3.23	3.81	3.94	3.96	3.96
		EEL Rank		_	-	-	-	-	-
	Design Load		kW	3.6	4.6	6.1	7.1	9.5	9.5
	Annual Electricity	Consumption*2	kWh/a	206	263	324	368	522	533
	SEER*4			6.1	6.1	6.5	6.7	6.3	6.2
		Energy Efficiency Class		A++	A++	A++	A++	A++	A++
	Capacity	Rated	kW	4.1	5.0	7.0	8.0	11.2	11.2
verage		Min - Max	kW	1.6 - 5.2	2.5 - 7.3	2.8 - 8.2	3.5 - 10.2	4.5 - 14.0	4.5 - 14.0
eason)	Total Input	Rated	kW	1.070	1.501	1.96	2.19	3.04	3.04
	COP			3.83	3.33	3.57	3.65	3.68	3.68
		EEL Rank		-	-		_	_	
	Design Load		kW	2.4	3.3	4.4	4.7	7.8	7.8
	Declared Capacity	at reference design temperature		2.4 (-10°C)	3.3 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)
		at bivalent temperature	kW	2.4 (-10°C)	3.3 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (–10°C)	7.8 (-10°C)
		at operation limit temperature	kW kW	2.2 (-11°C)	3.2 (-11°C)	2.8 (-20°C)	3.5 (-20°C)	5.8 (-20°C)	5.8 (-20°C) 0
	Back Up Heating C Annual Electricity		kWh/a	0 841	0 1126	0 1473	0 1532	0 2608	2608
	SCOP*4	Consumption	KVVII/a	3.9	4.1	4.2	4.3	4.1	4.1
		Energy Efficiency Class		3.9 A	4.1 A+	4.2 Δ+	4.5 A+	4.1 Δ+	4.1 A+
neratin	g Current (max)	Lifergy Emiciency oluss	I A	13.4	13.4	19.4	19.4	27.1	8.6
	Input [Cooling / Hea	ating Rated	kW	0.04 / 0.03	0.04 / 0.03	0.06	0.06	0.08	0.08
nit	Operating Current		A	0.35	0.35	0.43	0.43	0.57	0.57
	Dimensions <panel></panel>	H × W × D	mm	299 - 89		21.12	365 - 11		
	Weight <panel></panel>	,	ka	12.6	12.6	21	21	21	21
	Air Volume [Lo-Mi2	2-Mi1-Hi]	m³/min	7.5 - 8.2 - 9.2 - 10.9	7.5 - 8.2 - 9.2 - 10.9	18 - 20 - 22	18 - 20 - 22	20 - 23 - 26	20 - 23 - 26
	Sound Level (SPL)	[Lo-Mi2-Mi1-Hi]	dB(A)	34 - 37 - 40 - 43	34 - 37 - 40 - 43	39 - 42 - 45	39 - 42 - 45	41 - 45 - 49	41 - 45 - 49
	Sound Level (PWL		dB(A)	60	60	64	64	65	65
	Dimensions	H×W×D	mm		09 - 300	943 - 950	- 330 (+30)	1338 - 1050	- 330 (+40)
nit	Weight		kg	43	46	70	70	116	123
	Air Volume	Cooling	m³/min	45	45	55	55	110	110
		Heating	m³/min	45	45	55	55	110	110
	Sound Level (SPL)	Cooling	dB(A)	44	44	47	47	49	49
		Heating	dB(A)	46	46	48	48	51	51
	Sound Level (PWL)	Cooling	dB(A)	65	65	67	67	69	69
	Operating Current	(max)	A	13.0	13.0	19.0	19.0	26.5	8.0
	Breaker Size	11: :1/0	Α	16	16	25	25	32	16
xt.	Diameter	Liquid / Gas	mm	6.35 / 12.7	6.35 / 12.7	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
iping	Max. Length	Out-In	m	50	50	50 30	50	75	75 30
	Max. Height	Out-In	m	30	30		30	30	
	ed Operating Range	Cooling*3	°C	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46
Outdoor:	J	Heating	°C	-11 ~ +21	-11 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21

^{**1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP; if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself or 814DA is 2088 in the IPCC 4th Assessment Report.

The GWP of R41DA is 2088 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 Optional air protection guide is required where ambient temperature is lower than –5°C.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

J	Recall
Inv	
F	

Гуре				Inverte	er Heat Pump
door U	Init			PKA	-M100KA(L)
utdoor	Unit			PUHZ-P100VKA	PUHZ-P100YKA
friger					R410A*1
wer	Source				or power supply
		/U-)		230 / Single / 50	400 / Three / 50
			1347		
oling	Capacity	Rated Min - Max	kW kW	9.4 3.7 - 10.6	9.4 3.7 - 10.6
	T			3.7 - 10.6	
	Total Input EER	Rated	kW		3.12 3.01
	EEK	EEL Rank		3.01	
	Design Load	EEL Rank	kW	9.4	9.4
		• **	kWh/a	9.4 586	9.4 586
	Annual Electricity SEER*4	Consumption **	IKAALI/9	5.6	5.6
	SECH.	Energy Efficiency Class		5.6 A+	5.6 A+
-4:	Conscitu	Rated	kW	11.2	11.2
atıng rerage	Capacity	Min - Max	kW	2.8 - 12.5	2.8 - 12.5
erdge	Total Input		kW	3.48	3.48
13011)	COP	Rated	KVV		
	COP	EEL Rank		3.21	3.21
	Design Load	EEL KANK	kW	8.0	8.0
		I to the state of	kW	6.0 (–10°C)	6.0 (–10°C)
	Declared Capacity	at reference design temperature		7.0 (–10°C)	7.0 (–10°C)
		at bivalent temperature	kW	4.5 (–15°C)	7.0 (=7°C) 4.5 (=15°C)
	D. I. II. II. (* (at operation limit temperature	kW	4.5 (-15°C) 2.0	4.5 (-15°C) 2.0
	Back Up Heating (Annual Electricity		kWh/a	2.0	2.0
	SCOP*4	Consumption	KVVn/a	4.0	4.0
	SCOP	Energy Efficiency Class		4.0 A+	4.0 A+
	ng Current (max)	Ellergy Elliciency Class	Α	20.6	12.1
oor	Input	Rated	kW	0.08	0.08
it	Operating Current		A	0.06	0.08
	Dimensions <panel></panel>		mm		- 1170 - 295
	Weight <panel></panel>	IH X W X D	kg	21	- 1170 - 295
	Air Volume [Lo-Mi	d Uil	m³/min	20 - 23 - 26	20 - 23 - 26
	Sound Level (SPL)		dB(A)	41 - 45 - 49	41 - 45 - 49
	Sound Level (PWL		dB(A)	65	65
tdoo	r Dimensions	H × W × D	mm		- 1050 - 330
it	Weight	III V *V V D	kg	76	- 1030 - 330
	Air Volume	Cooling	m³/min		78
	All Volume	Heating	m³/min	79	79
	Sound Level (SPL)	Cooling	dB(A)	51	51
	Sound Level (SFL)	Heating	dB(A)	54	54
	Sound Level (PWL)		dB(A)	70	70
	Operating Current		A	20.0	11.5
	Breaker Size	(IIIua)	A	32	16
t.	Diameter	Liquid / Gas	mm	9.52 / 15.88	9.52 / 15.88
ι. Ding	Max. Length	Out-In	m	50	50
9	Max. Height	Out-In	m	30	30
aran+	eed Operating Range		°C		-15 ~ +46
utdoo		Heating	•c	-15 ~ +46 -15 ~ +21	-15 ~ +40 -15 ~ +21
3,400	.,	reautiy		-10 ~ +21	1 -15 ~ +21

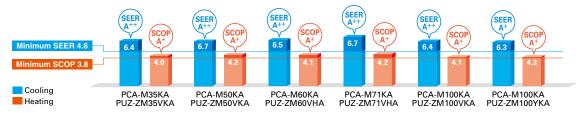
[|] Cutadoor| | Heating | *C | -15 - ±21 | -

R32
R410A

PCA-M35/50/60/71/100/125/140KA
oth high- and low-ceiling aceptional energy-saving conditioning needs.

A stylish new indoor unit design and airflow settings for both high- and low-ceiling interiors expand installation possibilities. Together with exceptional energy-saving performance, these units are the solution to diversified air conditioning needs.

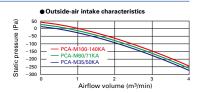
Stylish Indoor Unit Design


A stylish square-like design is adopted for the indoor units of all models. As a result, the units blend in better with the ceiling.

PCA-KA

ErP Lot 10 Compliant with High Energy-efficiency Achieving SEER/SCOP Rank A, A+ and A++

A direct-current (DC) fan motor is isntalled in the indoor unit, increasing the seasonal energy efficiency of newly designed Power Inverter series (PUHZ-ZM) and resulting in the full capacity models comply ErP Lot 10 with energy ranking A+/A++ for cooling and A/A+ for heating. This contribute to an impressive reduction in the cost of annual electricity.


Optional Drain Pump for Full-capacity Models

The pumping height of the optional drain pump has been increased from 400mm to 600mm, expanding flexibility in choosing unit location during installation work

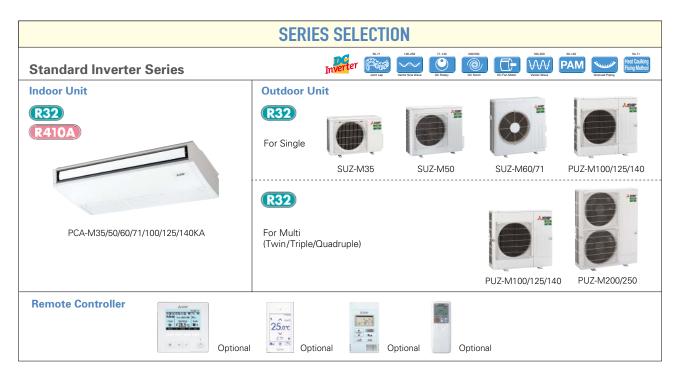
Outside-air Intake

Units are equipped with a knock-out hole that enables the induction of fresh outside-air.

Equipped with Automatic Air-speed Adjustment

In addition to the conventional 4-speed setting, units are now equipped with an automatic air-speed adjustment mode. This setting automatically adjusts the air-speed to conditions that match the room environment. At the start of heating/cooling operation, the airflow is set to high-speed to quickly heat/cool the room. When the room temperature reaches the desired setting, the airflow speed is decreased automatically for stable comfortable heating/cooling operation.

Equipped with High-/Low-ceiling Modes


Units are equipped with high- and low-ceiling operation modes that make it possible to switch the airflow volume to match room height. The ability to choose the optimum airflow volume makes it possible to optimize the breezy sensation felt throughout the room.

Capacity	High ceiling	Standard ceiling	Low ceiling
35	3.5m	2.7m	2.5m
50	3.5m	2.7m	2.5m
60	3.5m	2.7m	2.5m
71	3.5m	2.7m	2.5m
100	4.2m	3.0m	2.6m
125	4.2m	3.0m	2.6m
140	4.2m	3.0m	2.6m

PCZ-M KA Indoor Unit Combinations Indoor unit combinations shown below are possible.

										Outd	oor Ur	nit Cap	acity								
Indoor	Indoor Unit Combination Power Inverter (PUHZ-ZRP)											For Qu	adruple								
			50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power			50x1	60x1	71x1	100x1	125x1	140x1	-	-	35x2	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	-	-	-	_	-	N	1SDD-	50TR2	-E	MS 50W	DD- R2-E	MSE	OT-111	R3-E		DF- R2-E

PCZ-M KA Indoor Unit Combinations Indoor unit combinations shown below are possible.

										Outd	oor U	nit Cap	acity								
Indoor	Indoor Unit Combination				Fo	For Single For Twin For Triple For Quadru 71 100 125 140 200 250 71 100 125 140 200 250 140 200 250 200 25									adruple						
				60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Standa	ard Inverter (PUHZ-P&SUZ)	35x1	50x1	60x1	71x1	100x1	125x1	140x1	-	-	-	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	-	ı	-	-	ı	ı	MSD	D-50T	R2-E	MSI 50W	DD- R2-E	MSE	DT-111	R3-E	MS 1111	DF- R2-E

			Optional	Optional	Optional	Optional		_ 🥯	Optional	Optional		Diagnosis	
Туре						_		Inverter H	leat Pump				
ndoor U	nit			PCA-	PCA-	PCA-	PCA-	DCA N	1100KA	DCA N	1125KA	DCA M	1140KA
				M35KA	M50KA	M60KA	M71KA						
Outdoor	Unit			PUZ- ZM35VKA	PUZ- ZM50VKA	PUZ- ZM60VHA	PUZ- ZM71VHA	PUZ- ZM100VKA	PUZ- ZM100YKA	PUZ- ZM125VKA	PUZ- ZM125YKA	PUZ- ZM140VKA	PUZ- ZM140YI
efrigera	nt							R3	2*1				
ower	Source							Outdoor po	ower supply				
upply	Outdoor (V/Phase,	/Hz)					VKA • VH	A:230 / Single /	50, YKA:400 / 1	Three / 50			
ooling	Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.5	12.5	13.4	13.4
		Min - Max	kW	1.6 - 4.5	2.3 - 5.6	2.7 - 6.7	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0	5.5 - 14.0	6.2 - 15.0	6.2 - 15
	Total Input	Rated	kW	0.829	1.250	1.521	1.829	2.317	2.317	3.846	3.846	3.941	3.941
	EER			4.34	4.00	4.01	3.88	4.10	4.10	3.25	3.25	3.40	3.40
		EEL Rank		-	-	-	-	-	-	-	-	-	-
	Design Load		kW	3.6	5.0	6.1	7.1	9.5	9.5	-	-	-	_
	Annual Electricity	Consumption*2	kWh/a	197	260	328	371	513	523	-	-	-	_
	SEER*4			6.4	6.7	6.5	6.7	6.4	6.3	-	-	-	_
		Energy Efficiency Class		A++	A++	A++	A++	Α++	Δ++	-	-	-	_
leating	Capacity	Rated	kW	4.1	5.5	7.0	8.0	11.2	11.2	14.0	14.0	16.0	16.0
Average		Min - Max	kW	1.6-5.2	2.5 - 6.6	2.8 - 8.2	3.5 - 10.2	4.5 - 14.0	4.5 - 14.0	5.0 - 16.0	5.0 - 16.0	5.7 - 18.0	5.7 - 18.
eason)	Total Input	Rated	kW	1.019	1.361	1.745	2.156	3.018	3.018	3.954	3.954	4.432	4.432
	СОР			4.02	4.04	4.01	3.71	3.71	3.71	3.54	3.54	3.61	3.61
		EEL Rank	1347	-	-	4.4	4.7	7.8	7.8	-	-	-	-
	Design Load	Line from the first transfer	kW	2.4 2.4 (-10°C)	3.8 3.8 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (–10°C)	7.8 (–10°C)	-	-	-	-
	Declared Capacity	at reference design temperature at bivalent temperature	kW	2.4 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (–10°C)	7.8 (–10°C)	_	-	_	-
		at operation limit temperature	kW	2.4 (-10°C)	3.7 (–11°C)	2.8 (–20°C)	3.5 (–20°C)	5.8 (–20°C)	5.8 (–20°C)	-	-		
	Back Up Heating C		kW	0	0	0	0	0	0		_	-	_
	Annual Electricity		kWh/a	839	1265	1499	1563	2539	2539	_	_	_	
	SCOP*4	Consumption	KVVII/a	4.0	4.2	4.1	4.2	4.3	4.3	_	_		_
		Energy Efficiency Class		A+	A+	A+	A+	A+	A+	_	_		_
)peratir	g Current (max)		А	13.3	13.4	19.4	19.4	27.2	8.7	27.3	10.3	28.9	13.9
ndoor	Input	Rated	kW	0.04	0.05	0.06	0.06	0.09	0.09	0.11	0.11	0.14	0.14
Jnit	Operating Current	(max)	А	0.29	0.37	0.39	0.42	0.65	0.65	0.76	0.76	0.90	0.90
	Dimensions <panel></panel>	$H \times W \times D$	mm	230 - 96	60 - 680	230 - 12	280 - 680		•		600 - 680		
	Weight <panel></panel>		kg	25	26	32	32	37	37	38	38	40	40
	Air Volume [Lo-Mi2		m³/min				16-17-18-20		22-24-26-28	23-25-27-29	23-25-27-29	24-26-29-32	24-26-29
	Sound Level (SPL)		dB(A)				35-37-39-41					41-43-45-48	
	Sound Level (PWL)		dB(A)	60	60	60	62	63	63	65	65	68	68
	Dimensions	$H \times W \times D$	mm		09 - 300		- 330 (+25)				0 - 330 (+40)		
Jnit	Weight		kg	46	46	70	70	116	123	116	125	118	131
	Air Volume	Cooling	m³/min	45	45	55	55	110	110	120	120	120	120
		Heating	m³/min dB(A)	45 44	45 44	55 47	55 47	110 49	110 49	120 50	120 50	120	120 50
	Sound Level (SPL)	Cooling Heating	dB(A)	44	44	47	47	49 51	49 51	50	52	50 52	50
	Sound Level (PWL)		dB(A)	65	65	67	67	69	69	70	70	70	70
	Operating Current		A A	13.0	13.0	19.0	19.0	26.5	8.0	26.5	9.5	28.0	13.0
	Breaker Size	(IIIQA/	A	16	16	25	25	32	16	32	9.5	40	16
xt.	Diameter Diameter	Liquid / Gas	mm	6.35 / 12.7	6.35 / 12.7	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88		9.52 / 15.88	9.52 / 15.88	9.52 / 15.
iping	Max. Length	Out-In	m	50	50	55	55	100	100	100	100	100	100
		Out-In	m	30	30	30	30	30	30	30	30	30	30
iping	May Height												
	Max. Height ed Operating Range	Cooling*3	°C	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +4

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 Optional air protection guide is required where ambient temperature is lower than –5°C.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

Failure	١

Type								Inverter H	eat Pump				
Indoor U	nit			PCA- M35KA	PCA- M50KA	PCA- M60KA	PCA- M71KA	PCA-M	1100KA	PCA-M	1125KA	PCA-M	1140KA
Outdoor				SUZ- M35VA	SUZ- M50VA	SUZ- M60VA	SUZ- M71VA	PUZ- M100VKA	PUZ- M100YKA	PUZ- M125VKA	PUZ- M125YKA	PUZ- M140VKA	PUZ- M140YKA
Refrigera								R3:					
	Source							Outdoor po					
Supply	Outdoor (V/Phase	/Hz)					VA • VKA	4:230 / Single / 5	50, YKA:400 / TI	rree / 50			
Cooling	Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.1	12.1	13.4	13.4
		Min - Max	kW	0.8 - 3.9	1.5 - 5.6	1.6 - 6.3	2.2 - 8.1	4.0 - 10.6	4.0 - 10.6	5.7 - 13.0	5.7 - 13.0	5.7 - 14.1	5.7 - 14.1
	Total Input	Rated	kW	0.90	1.51	1.64	1.97	2.94	2.94	4.01	4.01	5.36	5.36
	EER			4.00	3.30	3.70	3.60	3.23	3.23	3.01	3.01	2.50	2.50
		EEL Rank		-	-	-	-	-	-	-	-	-	
	Design Load		kW	3.6	5.0	6.1	7.1	9.5	9.5	12.1	12.1	13.4	13.4
	Annual Electricity	Consumption*2	kWh/a	198	291	333	381	552	552	-	-	-	-
	SEER*4	Consumption	ice erry a	6.3	6.0	6.4	6.5	6.0	6.0	_	_	_	_
		Energy Efficiency Class		A++	A+	A++	A++	A+	A+	_	_	_	_
Heating	Capacity	Rated	kW	4.1	6.0	7.0	8.0	11.2	11.2	13.5	13.5	15.0	15.0
(Average	Joupauty	Min - Max	kW	1.0 - 5.0	1.5 - 7.2	1.6 - 8.0	2.0 - 10.2	2.8 - 12.5	2.8 - 12.5	4.1 - 15.0	4.1 - 15.0	4.2 - 15.8	4.2 - 15.8
Season)	Total Input	Rated	kW	1.02	1.61	1.75	2.21	3.28	3.28	3.95	3.95	4.28	4.28
,	COP	Hated	KVV	4.00	3.71	4.00	3.61	3.41	3.41	3.41	3.41	3.50	3.50
	COI	EEL Rank		4.00	3.71	4.00	3.01	- 0.41	-	- 0.41	- 5.41	- 3.30	-
	Design Load	LLL Halik	kW	2.6	4.3	4.6	5.8	8.0	8.0	8.5	8.5	9.4	9.4
		at reference design temperature	kW	2.3 (-10°C)	3.8 (-10°C)	4.1 (–10°C)	5.2 (-10°C)	6.0 (-10°C)	6.0 (-10°C)	8.5 (-10°C)	8.5 (-10°C)	9.4 (-10°C)	9.4 (-10°C)
	Deciared Capacity	at bivalent temperature	kW	2.3 (-7°C)	3.8 (-7°C)	4.1 (-7°C)	5.2 (-7°C)	7.0 (–7°C)	7.0 (–7°C)	8.5 (-10°C)	8.5 (-10°C)	9.4 (-10°C)	9.4 (-10°C)
		at operation limit temperature	kW	2.3 (–10°C)	3.8 (-10°C)	4.1 (–10°C)	5.2 (-10°C)	4.5 (–15°C)	4.5 (–15°C)	6.0 (–15°C)	6.0 (-15°C)	7.0 (–15°C)	7.0 (–15°C)
	Back Up Heating (kW	0.3	0.5	0.5	0.6	2.0	2.0	-	- 0.0 (=15 C)	7.0 (=13 C)	7.0 (=13 C)
	Annual Electricity		kWh/a	909	1456	1555	1971	2719	2719	_	_	_	_
	SCOP*4	Consumption	KVVII/a	4.0	4.1	4.1	4.1	4.1	4.1	_	_		
	SCOP	Energy Efficiency Class		A+	A+	Δ+	A+	A+	A+		_		
Operation	g Current (max)	Lifergy Efficiency class	Α	8.8	13.9	15.2	15.2	20.7	12.2	27.3	12.3	30.9	12.4
Indoor	Input	Rated	kW	0.04	0.05	0.06	0.06	0.09	0.09	0.11	0.11	0.14	0.14
Unit	Operating Current		A	0.29	0.37	0.39	0.42	0.65	0.65	0.76	0.76	0.90	0.90
Oiiit	Dimensions <panel></panel>		mm		0.37 60 - 680		80 - 680	0.03	0.03		0.76	0.90	0.30
	Weight <panel></panel>	II X W X B	ka	250 - 90	26	32	32	37	37	38	38	40	40
	Air Volume [Lo-Mi	2 M/i1 Lil	m³/min				16-17-19-20					24-26-29-32	
	Sound Level (SPL)		dB(A)									41-43-45-48	
	Sound Level (PWL		dB(A)	60	60	60	62	63	63	65	65	68	68
Outdoor	Dimensions	H×W×D	mm		714 - 800 - 285		40 - 330	03	03		- 330 (+40)	00	00
Unit	Weight	II X VV X D	kg	35	41	54	55	76	78	84	85	84	85
Oilit	Air Volume	Cooling	m³/min	34.3	45.8	50.1	50.1	79.0	79.0	86.0	86.0	86.0	86.0
	All volume	Heating	m³/min	32.7	43.7	50.1	50.1	79.0	79.0	92.0	92.0	92.0	92.0
	Sound Level (SPL)	Cooling	dB(A)	48	43.7	49	49	79.0 51	51	54	92.0 54	55	55
	Sound Level (SPL)	Heating	dB(A)	48	48	51	51	54	54	56 56	56	57	57
	Sound Level (PWL)		dB(A)	59	64	65	66	70	70	72	72	73	73
	Operating Current		A A	8.5	13.5	14.8	14.8	20.0	11.5	26.5	11.5	30.0	11.5
		(IIIdX)	A	8.5 10	13.5	14.8	14.8	32	16	26.5 32	11.5	30.0 40	16
Ext.	Breaker Size	Liquid / Gas		6.35 / 9.52	6.35 / 12.7	6.35 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
Ext. Piping	Diameter		mm							9.52 / 15.88			
riping	Max. Length	Out-In	m	20	30	30 30	30 30	50	55	30	65 30	65 30	65
	Max. Height	Out-In	m	12	30	30	30	30	30	30	30	J 30	30

[|] Max. Height | Out-in |
| Guaranteed Operating Range | Cooling** | Heating | °C -10 - +24 -15 - +24 -15 - +24 -15 - +24 -15 - +24 -15 - +24 -15 - +24 -15 - +21 -15 - +21 -15 - +21 -15 - +21 -15 - +21 [Outdoor] **1 Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 Optional air protection guide is required where ambient temperature is lower than –5°C.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

PCA-M KA Indoor Unit Combinations Indoor unit combinations shown below are possible.

										Outd	oor U	nit Cap	acity								
Indoor	Unit Combination				Fo	or Sing	gle						For	Twin			Fo	or Trip	le	For Qu	adruple
		35	50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power	Inverter (PUHZ-ZRP)	35x1	50x1	60x1	71x1	100x1	125x1	140x1	-	-	35x2	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	-	-	-	-	-	-	MSE	D-50	R-E	MSDD-	50WR-E	MSI	DT-111	R-E	MSDF-1	1111R-E
Standa	rd Inverter (PUHZ-P&SUZ)	35x1	50x1	60x1	71x1	100x1	125x1	140x1	-	-	-	50x2	60x2	71x2	100x2	125x2	50x3	60x3	71x3	50x4	60x4
	Distribution Pipe	-	-	-	-	-	-	-	-	-	-	MSI	D-50	ΓR-E	MSDD-	50WR-E	MSI	DT-111	IR-E	MSDF-1	1111R-E

PCA-M KA CEDITO

	NVERTER		Rotation Back-up	Optional	Group Control M-NE	Wi-Fi)) Interface	COMPO	ZZ ection Cleaning-free,	Wiring Reuse	Drain Lift Up Optional	P Flare connection	Self Diagnosis Red	ure call
Type								Inverter H	eat Pump				
Indoor Ur	nit			PCA- M35KA	PCA- M50KA	PCA- M60KA	PCA- M71KA	PCA-N	1100KA	PCA-W	1125KA	PCA-M	1140KA
Outdoor	Unit			PUHZ- ZRP35VKA2	PUHZ- ZRP50VKA2	PUHZ- ZRP60VHA2	PUHZ- ZRP71VHA2	PUHZ- ZRP100VKA3	PUHZ- ZRP100YKA3	PUHZ- ZRP125VKA3	PUHZ- ZRP125YKA3	PUHZ- ZRP140VKA3	PUHZ- ZRP140YKA3
Refrigera	nt				•	•	•	R41	0A*1	•	•	•	•
	Source							Outdoor po					
Supply	Outdoor (V/Phase	/Hz)					VKA • VH	A:230 / Single /					
Cooling	Capacity	Rated	kW	3.6	5.0	6.1	7.1	9.5	9.5	12.5	12.5	13.4	13.4
•		Min - Max	kW	1.6 - 4.5	2.3 - 5.6	2.7 - 6.7	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0	5.5 - 14.0	6.2 - 15.0	6.2 - 15.0
	Total Input	Rated	kW	0.86	1.34	1.66	1.82	2.42	2.42	3.98	3.98	3.95	3.95
	EER			4.19	3.73	3.67	3.90	3.93	3.93	3.14	3.14	3.39	3.39
		EEL Rank		-	-	-	-	-	-	-	-	-	-
	Design Load		kW	3.6	5.0	6.1	7.1	9.5	9.5	-	_	-	-
	Annual Electricity	Consumption*2	kWh/a	202	283	340	367	542	553	-	-	-	-
	SEER*4			6.2	6.1	6.2	6.7	6.1	6.0	-	-	-	-
	_	Energy Efficiency Class		A++	A++	A++	A++	A++	A+	-	-		
	Capacity	Rated	kW	4.1	5.5	7.0	8.0	11.2	11.2	14.0	14.0	16.0	16.0
(Average Season)		Min - Max	kW	1.6 - 5.2	2.5 - 6.6	2.8 - 8.2	3.5 - 10.2	4.5 - 14.0	4.5 - 14.0	5.0 - 16.0	5.0 - 16.0	5.7 - 18.0	5.7 - 18.0
Season)	Total Input COP	Rated	kW	1.02 4.02	1.45 3.79	1.93 3.63	2.20 3.64	3.04 3.68	3.04 3.68	3.80 3.68	3.80 3.68	4.57 3.50	4.57
		EEL Rank		4.02	3.79	3.63	3.04	3.08	3.08		3.68	3.50	3.50
	Design Load	EEL RANK	l kW	2.4	3.8	4.4	4.7	7.8	7.8			_	_
		at reference design temperature		2.4 (-10°C)	3.8 (–10°C)	4.4 (-10°C)	4.7 (–10°C)	7.8 (–10°C)	7.8 (–10°C)				
		at bivalent temperature	kW	2.4 (-10°C)	3.8 (-10°C)	4.4 (-10°C)	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)				
		at operation limit temperature	kW	2.2 (-11°C)	3.7 (-11°C)	2.8 (-20°C)	3.5 (-20°C)	5.8 (-20°C)	5.8 (-20°C)	_	_	_	
	Back Up Heating (kW	0	0.7 (11 0)	0	0.0 (20 0)	0.0 (20 0)	0.0 (20 0)	_	_	_	
	Annual Electricity	Consumption*2	kWh/a	815	1257	1458	1519	2837	2837	-	_	_	_
	SCOP*4		,, 0	4.1	4.2	4.3	4.3	3.9	3.9	-	-	-	-
		Energy Efficiency Class	;	A+	A+	A+	A ⁺	A	A	-	-	-	_

Sound Level (PWL) Cooling
Operating Current (max)
Breaker Size

Ext. Diameter Liquid /
Piping Max. Leight Out-In
Guaranteed Operating Range
(Outdond) *1 Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a period contains a refrigerant fluid with a GWP equal to 1975. This means that it is got this refrigerant muci would be leaked to the atmosphere, the impact of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 Optional air protection guide is required where ambient temperature is lower than –5°C.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

230 - 1280 - 680

330 (+30)

943 - 950

Weight Air Volume

Sound Level (SPL)

Liquid / Gas

Outdoo

630 - 809 - 300

kW A mm

kg

kg n³/mi n³/min dB(A)

dB(A) dB(A) A A mm

330 (+

		Opionia	Ориспа		Ориона Ориона	Ориалы			Ориспа	Ориспа			
Type								Inverter F	leat Pump				
Indoor U	nit			PCA-M35KA	PCA-M50KA	PCA-M60KA	PCA-M71KA	PCA-M	100KA	PCA-N	1125KA	PCA-N	1140KA
Outdoor											PUHZ-P125YKA		
Refrigera				302 KA03VA0	302 KA30VA0	302 10400 VA0	302 IOA7 I VAO	R41		1 01121 1201104	1 0112 1 1201104	I ONE I HOVION	11011211401104
Power	Source							Outdoor po					
	Outdoor (V/Phase	/H-1					\/Δ • \/ <i>K</i> /		50, YKA:400 / Ti	ree / 50			
			kW	3.6	5.0	5.7	7.1	9.4	9.4	12.1	12.1	13.6	13.6
Cooling	Capacity	Rated Min - Max	kW	1.4 - 3.9	2.3 - 5.6	2.3 - 6.3	7. I 2.8 - 8.1	9.4 3.7 - 10.6	9.4 3.7 - 10.6	5.6 - 13.0	5.6 - 13.0	5.8 - 14.1	5.8 - 14.1
	T		kW	1.4 - 3.9	1.550	1.720	2.8 - 8.1	3.7 - 10.6					
	Total Input EER	Rated	KVV	3.43	3.23	3.31	3.45	3.05	3.05	4.24 2.85	4.24 2.85	5.62 2.41	5.62 2.41
	EEK	EEL Rank		3.43	3.23	3.31	3.45	3.08	3.08	2.85	2.85	2.41	2.41
	Design Load	EEL RANK	kW	3.6	5.0	5.7	7.1	9.4	9.4	_	_	_	
	Annual Electricity	Consumption*2	kWh/a	209	296	325	409	586	586		_	_	
	SEER*4	Consumption	KVVII/a	6.0	5.8	6.1	6.0	5.6	5.6	_	_	_	
	SEER.	Energy Efficiency Class		A+	A+	Δ++	A+	3.6 A+	5.6 A+	_	_	_	
Heating	Capacity	Rated	kW	4.1	5.5	6.9	7.9	11.2	11.2	13.5	13.5	15.0	15.0
(Average		Min - Max	kW	1.7 - 5.0	1.7 - 6.6	2.5 - 8.0	2.6 - 10.2	2.8 - 12.5	2.8 - 12.5	4.8 - 15.0	4.8 - 15.0	4.9 - 15.8	4.9 - 15.8
Season)	Total Input	Rated	kW	1.050	1.520	1.910	2.180	3.37	3.37	4.06	4.06	4.47	4.47
0000011,	COP	Inated	I KVV	3.90	3.62	3.61	3.62	3.32	3.32	3.32	3.32	3.35	3.35
		EEL Rank		-	-	- 0.01	-	- 0.02	- 0.02	-	- 3.32	-	-
	Design Load	LLL Halik	kW	2.6	4.0	4.8	5.8	8.0	8.0	_	_	_	_
		at reference design temperature	kW	2.3 (-10°C)	3.6 (-10°C)	4.0 (-10°C)	5.2 (-10°C)	6.0 (-10°C)	6.0 (-10°C)	_	_	_	_
	Deciared Supucity	at bivalent temperature	kW	2.3 (-7°C)	3.6 (-7°C)	4.3 (-7°C)	5.2 (-7°C)	7.0 (–7°C)	7.0 (-7°C)	_	_	_	_
		at operation limit temperature	kW	2.3 (-10°C)	3.6 (-10°C)	4.0 (–10°C)	5.2 (-10°C)	4.5 (-15°C)	4.5 (–15°C)	_	_	_	_
	Back Up Heating C		kW	0.3	0.4	0.8	0.6	2.0	2.0	_	_	_	_
	Annual Electricity		kWh/a	887	1398	1678	2028	2726	2726	-	_	_	_
	SCOP*4			4.1	4.0	4.0	4.3	4.1	4.1	-	-	-	-
		Energy Efficiency Class		A ⁺	Α+	A ⁺	A+	A+	A+	-	-	-	-
Operatir	ng Current (max)		A	8.5	12.4	14.4	16.5	20.7	12.2	27.3	12.3	30.9	12.4
Indoor	Input	Rated	kW	0.04	0.05	0.06	0.06	0.09	0.09	0.11	0.11	0.14	0.14
Unit	Operating Current		А	0.29	0.37	0.39	0.42	0.65	0.65	0.76	0.76	0.90	0.90
	Dimensions <panel></panel>	$H \times W \times D$	mm	230-96		230-12					00-680		
	Weight <panel></panel>		kg	25	26	32	32	37	37	38	38	40	40
	Air Volume [Lo-Mi2		m³/min	10-11-12-14							23-25-27-29		
	Sound Level (SPL)		dB(A)	31-33-36-39							39-41-43-45		
	Sound Level (PWL		dB(A)	60	60	60	62	63	63	65	65	68	68
	Dimensions	H × W × D	mm	550 - 800 - 285		880 - 840 - 330				981 - 10			
Unit	Weight		kg	35	54	50	53	76	78	84	85	84	85
	Air Volume	Cooling	m³/min	36.3	44.6	40.9	50.1	79	79	86	86	86	86
		Heating	m³/min	34.8	44.6	49.2	48.2	79	79	92	92	92	92
	Sound Level (SPL)	Cooling	dB(A)	49	52	55	55	51	51	54	54	56	56
		Heating	dB(A)	50	52 65	55	55	54	54 70	56 72	56	57	57 75
	Sound Level (PWL)		dB(A)	62		65	69	70			72	75	
	Operating Current	(max)	A	8.2	12.0	14.0	16.1 20	20.0	11.5	26.5	11.5	30.0	11.5 16
Ext.	Breaker Size Diameter	II::: / C	Α	10 6.35 / 9.52	20 6.35 / 12.7	20 6.35 / 15.88	9.52 / 15.88	32 9.52 / 15.88	16 9.52 / 15.88	32 9.52 / 15.88	16 9.52 / 15.88	40 9.52 / 15.88	9.52 / 15.88
		Liquid / Gas	mm m		30								
riping	Max. Length	Out-In	m	20 12	30	30 30	30 30	50 30	50 30	50 30	50 30	50 30	50 30
Guerorte	Max. Height ed Operating Range	Out-In Coolina*3	°C	-10 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46
Outdoor		Heating	°C	-10 ~ +46 -10 ~ +24	-15 ~ +46 -15 ~ +21								
TOULUOUI		Heating		-10 ~ +24	-10 ~ +24	-10 ~ +24	-10 ~ +24	-15 ~ +21	-15 ~ +21		-15 ~ +Z1		-15 ~ +21

[|] Hediting | To | Heating | To | Hea

Tough on Oily Smoke

A durable stainless steel casing that is resistant to oil and grease is provided to protect the surface of the body. Grimy dirt and stains are removed easily, enabling the unit to be kept clean at all times.

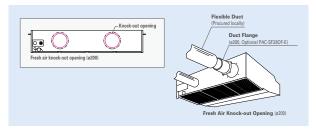
High-performance Oil Mist Filter


A high-performance heavy-duty oil mist filter is included as standard equipment. The filtering system is more efficient than conventional filters, thereby effectively reducing the oily smoke entering the air conditioner. The filter is disposable, thereby enabling trouble-free cleaning and maintenance.

Oil Mist Filter Cleaning

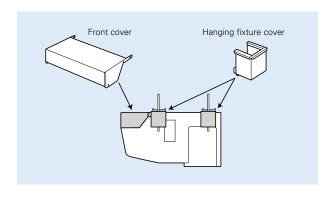
When used in kitchens, the oil mist filter should be replaced once every two months. The system comes with 12 filters elements. After these have been used, optional elements (PAC-SG38KF-E) can be purchased.

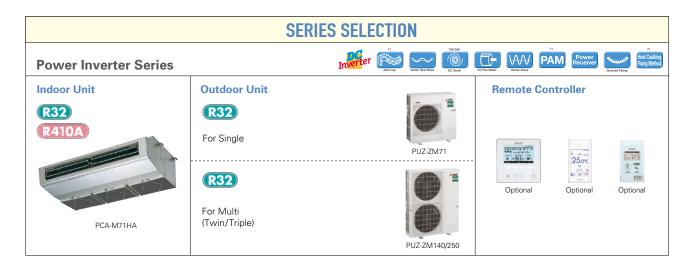
Pull the handle to easily slide the filter out


Easy Maintenance – Even for Cleaning the Fan

A separate fan casing that can be disassembled in sections is adopted to ensure easy fan cleaning. Drain pan cleaning onsite is also no problem owing to the use of a pipe connector that is easily removed.

Fresh Outside-air Intake (Option)


There is a knock-out opening on the rear panel of the unit that can be used to bring fresh air into the unit. This helps to improve ventilation and make the kitchen comfortable.



Notes: 1) A fresh-air duct flange is required (sold separately) 2) Intake air is not 100% fresh (outside) air.

Cosmetic Front and Hanging Fixture Covers (Option)

Cosmetic covers are available to prevent the collection of dust and grime on the main body and hanging fixture sections.

PCA-M HA Indoor Unit Combinations Indoor unit combinations shown below are possible.

										Outd	oor Ui	nit Cap	acity								
Indoor	Unit Combination				Fo	or Sing	jle						For	Twin			F	or Trip	le	For Qu	adruple
		35	50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power	Inverter (PUZ-ZM)	-	-	-	71x1	-	-	-	-	-	_	-	-	71x2	-	-	-	-	71x3	-	
	Distribution Pipe	-	-	-	-	-	-	-	-	-	-	-	-	MSDD- 50TR2-E	-	-	-	-	MSDT- 111R3-E	-	-

PCA-M HA Indoor Unit Combinations Indoor unit combinations shown below are possible.

									Outd	oor Ui	nit Cap	acity								
Indoor Unit Combination				Fc	or Sing	gle						For	Twin			F	or Trip	le	For Qu	adruple
	35	50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power Inverter (PUHZ-ZRP)	-	-	-	71x1	-	-	-	-	-	-	-	-	71x2	-	-	-	-	71x3	-	_
Distribution Pipe	-	-	-	-	-	_	-	-	-	-	-	-	MSDD-50TR-E	-	-	-	-	MSDT-111R-E	-	_

PCA-RP HA SERIES

Туре				Inverter	Heat Pump
ndoor U	nit			PCA:	-M71HA
utdoor	Unit			PUHZ-ZRP71VHA2	PUZ-ZM71VHA
efrigera				R410A DX*1	R32 DX*1
ower	Source				power supply
	Outdoor (V/Phase	/H ₂)		230 /	Single / 50
		Rated	kW	7.1	7.1
ooling	Сарасіту		kW	3.3 - 8.1	3.3 - 8.1
	Total Input	Min - Max Rated	kW	2.17	2.02
	EER	nateu	KVV	Z.17	2.02
		EEL Rank			
	Design Load	LLL Halik	kW	7.1	7.1
	Annual Electricity	Consumption*2	kWh/a	447	444
	SEER*4	Consumption	KVVII/a	5.6	5.6
	JLLII	Energy Efficiency Class			3.0 A+
eating	Capacity	Rated	kW	7.6	7.6
eating verage	oupacity	Min - Max	kW	3.5 - 10.2	3.5 - 10.2
ason)	Total Input	Rated	kW	2.35	2.17
,	COP	I nated			Z.17 —
		EEL Rank			_
	Design Load		kW	4.7	4.7
		at reference design temperature	kW	4.7	4.7
	Decidica Capacity	at bivalent temperature	kW	4.7	4.7
		at operation limit temperature	kW	3.5	3.7
	Back Up Heating (anacity	kW	0.0	0.0
	Annual Electricity		kWh/a	1751	1673
	SCOP*4	oonoumption		3.8	3.9
		Energy Efficiency Class		A	A
oeratir	ng Current (max)	, , , , , , , , , , , , , , , , , , , ,	A		19.4
door	Input	Rated	kW		0.10
nit	Operating Current	(max)	A		0.43
	Dimensions <panel></panel>		mm	280 - 1	1136 - 650
	Weight <panel></panel>		kg		42
	Air Volume [Lo-Hi]		m³/min		6 - 18
	Sound Level (SPL)		dB(A)	3	7 - 39
	Sound Level (PWL		dB(A)		57
utdoor	Dimensions	H×W×D	mm	943 - 950 - 330 (+30)	943 - 950 - 330 (+25)
nit	Weight	•	kg	70	70
	Air Volume	Cooling	m³/min	55.0	55.0
		Heating	m³/min	55.0	55.0
	Sound Level (SPL)		dB(A)	47	47
		Heating	dB(A)	48	49
	Sound Level (PWL)		dB(A)	67	67
	Operating Current	(max)	A	19.0	19.0
	Breaker Size		A	25	25
ct.	Diameter	Liquid / Gas	mm	9.52 / 15.88	9.52 / 15.88
ping	Max. Length	Out-In	m	50	55
	Max. Height	Out-In	m	30	30
	ed Operating Range		°C	-15 ~ +46	−15 ~ +46
Dutdoor]	Heating	°C	−20 ~ +21	-20 ~ +21

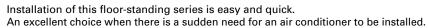
^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself and always ask a professional.

The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

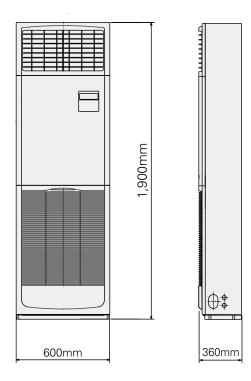
*3 Optional air protection guide is required where ambient temperature is lower than -5°C.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

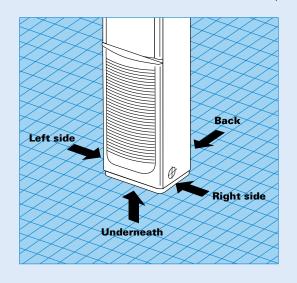


		Optional		
Type				Inverter Heat Pump
Indoor Ur	nit			PCA-M71HA
Outdoor	Unit			PUHZ-ZRP71VHA2
Refrigera				R410A*1
	Source			Outdoor power supply
Supply	Outdoor (V/Phase	/Hz)		230 / Single / 50
Cooling	Capacity	Rated	kW	7.1
ccciiiig		Min - Max	kW	3.3 - 8.1
	Total Input	Rated	kW	2.17
	EER			-
		EEL Rank		-
	Design Load		kW	7.1
	Annual Electricity	Consumption*2	kWh/a	447
	SEER*4	•		5.6
		Energy Efficiency Class		A+
Heating	Capacity	Rated	kW	7.6
(Average Season)		Min - Max	kW	3.5 - 10.2
Season)		Rated	kW	2.35
	COP			=
		EEL Rank		-
	Design Load		kW	4.7
	Declared Capacity	at reference design temperature	kW	4.7 (–10°C)
		at bivalent temperature	kW	4.7 (–10°C)
		at operation limit temperature	kW	3.5 (–20°C)
	Back Up Heating C	Capacity	kW	0
	Annual Electricity	Consumption*2	kWh/a	1751
	SCOP*4	Energy Efficiency Class		3.8
0		Energy Eπiciency Class	_ A	A 19.4
	ng Current (max)	Rated	kW	19.4 0.09
	Input Operating Current		A	0.09
	Dimensions <panel></panel>		mm	280 - 1136 - 650
	Weight <panel></panel>	IH X W X D	kg	200 - 1130 - 050
	Air Volume [Lo-Hi]		m³/min	17-19
	Sound Level (SPL)	II o-Hil	dB(A)	34-38
	Sound Level (PWL	1	dB(A)	56
Outdoor	Dimensions	H × W × D	mm	943 - 950 - 330 (+30)
	Weight		kg	70
	Air Volume	Cooling	m³/min	55.0
		Heating	m³/min	55.0
	Sound Level (SPL)	Cooling	dB(A)	47
	' ' ' ' '	Heating	dB(A)	48
	Sound Level (PWL)	Cooling	dB(A)	67
	Operating Current	(max)	Α	19.0
	Breaker Size		А	25
Ext.	Diameter	Liquid / Gas	mm	9.52 / 15.88
	Max. Length	Out-In	m	50
	Max. Height	Out-In	m	30
Guarante	ed Operating Range	Cooling*3	°C	-15 ~ +46
[Outdoor			0.0	

Cooling*3 °C | Cooling*3 °C | Cooling*3 °C | Cooling*3 °C | Cooling*3 °C | Cooling*3 °C | Cooling*4 °C | Cooling*4 °C | Cooling*4 °C | Cooling*5 °C | Cooling*6 °C | Coolin



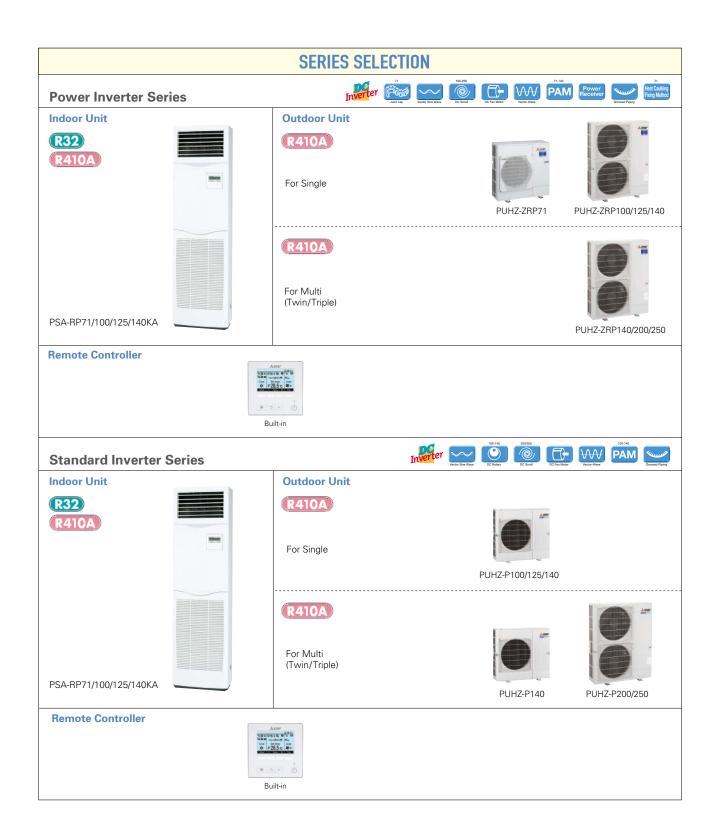
Quick and Easy Installation, Space-saving and Design That Compliments Any Interior


The floor-standing indoor unit is mounted on the floor, enabling quick installation. Its compact body requires only minimal space.

PSA-RP71KA

4-way pipe work connections enable greater freedom in installation

Remarkable freedom in choosing installation sites is allowed by providing piping connection to the indoor unit in four places: left side, back, from underneath and on the right side of the unit. Even installation in the corner of a room is easy.


Built-in Remote Controller

Equipped with PAR-40MAA, the latest wired remote controller. Offering excellent readability and a diverse range of functions, the remote controller increases user-friendliness and boosts user satisfaction.

Main Functions

- Multi-language Display
- Limited Temperature Range Setting
- Auto-off Timer
- Operation Lock
- Weekly Timer

PSZ-RP KA Indoor Unit Combinations Indoor unit combinations shown below are possible.

1021	ii io (iiidooi oiiit (30111		11101	10		G C				20.	o	pooc								
										Outd	oor Uı	nit Cap	pacity								
Indoor	Unit Combination				Fo	or Sing	gle						For	Twin			F	or Trip	le	For Qu	adruple
		35	50	60	71	100	125	140	200	250	71	100	125	140	200	250	140	200	250	200	250
Power	Inverter (PUHZ-ZRP)	-	-	-	71x1	100x1	125x1	140x1	-	_	-	-	_	71x2	100x2	125x2	1	-	71x3	-	-
	Distribution Pipe	-	_	_	-	-	_	-	_	_	-	-	_	MSDD-50TR-E	MSDD-	50WR-E	_	-	MSDT-111R-E	-	-
Standa	rd Inverter (PUHZ-P)	-	-	_	-	100x1	125x1	140x1	-	-	-	-	_	71x2	100x2	125x2	ı	-	71x3	-	-
	Distribution Pipe	-	-	-	-	-	-	-	-	_	-	-	-	MSDD-50TR-E	MSDD-	50WR-E	-	-	MSDT-111R-E	-	-

Туре							Inverter Heat Pump			
Indoor U	Init	**		PSA-RP71KA	PSA-RF		PSA-RP	125KA	PSA-RF	2140KA
Outdoor							PUHZ-ZRP125VKA3			
				PUHZ-ZRP71VHA2	PUHZ-ZRP100VKA3	PUHZ-ZRP100YKA3		PUHZ-ZRP125YKA3	PUHZ-ZRP140VKA3	PUHZ-ZRP140YKA3
Refriger							R410A*1			
Power	Source						Outdoor power supply			
							0 / Single / 50, YKA:40			
Cooling	Capacity	Rated	kW	7.1	9.5	9.5	12.5	12.5	13.4	13.4
		Min - Max	kW	3.3 - 8.1	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0	5.5 - 14.0	6.2 - 15.0	6.2 - 15.0
	Total Input	Rated	kW	1.89	2.50	2.50	4.09	4.09	4.06	4.06
	EER			_	_	_	3.06	3.06	3.30	3.30
		EEL Rank		-	-	-	-		-	-
	Design Load		kW	7.1	9.5	9.5	_		-	-
	Annual Electricity	Consumption*2	kWh/a	396	595	606	-		-	-
	SEER*4			6.3	5.6	5.5			-	-
		Energy Efficiency Class		A++	Α+	A	-	-	-	
	Capacity	Rated	kW	7.6	11.2	11.2	14.0	14.0	16.0	16.0
(Average		Min - Max	kW	3.5 - 10.2	4.5 - 14.0	4.5 - 14.0	5.0 - 16.0	5.0 - 16.0	5.7 - 18.0	5.7 - 18.0
Season)		Rated	kW	2.21	3.08	3.08	4.24	4.24	4.79	4.79
	COP			-	-	-	3.30	3.30	3.34	3.34
		EEL Rank		-	-	-	-	-	-	-
	Design Load		kW	4.7	7.8	7.8			-	-
	Declared Capacity	at reference design temperature	kW	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)	-	-	-	-
		at bivalent temperature	kW	4.7 (-10°C)	7.8 (-10°C)	7.8 (-10°C)			-	-
		at operation limit temperature	kW	3.5 (-20°C)	5.8 (-20°C)	5.8 (-20°C)			-	-
	Back Up Heating (kW	0	0	0	-		-	-
	Annual Electricity	Consumption*2	kWh/a	1666	2761	2761			-	-
	SCOP*4			4.0	4.0	4.0	-	_	-	_
	L	Energy Efficiency Class		A+	A+	A+	-	-	-	-
	ng Current (max)	To	A	19.4	27.2	8.7	27.2	10.2	28.7	13.7
Indoor	Input	Rated	kW	0.06	0.11	0.11	0.11 0.73	0.11	0.11	0.11
Unit	Operating Current		Α	0.4	0.71	0.71		0.73	0.73	0.73
	Dimensions <panel></panel>]H × W × D	mm		46	10	1900 - 600 - 360	46	48	48
	Weight <panel></panel>	1.1.12	kg	46 20 - 22 - 24	25 - 28 - 30	46 25 - 28 - 30	46 25 - 28 - 31	25 - 28 - 31	25 - 28 - 31	25 - 28 - 31
	Air Volume [Lo-Mio		m³/min			25 - 28 - 30 45 - 49 - 51	25 - 28 - 31 45 - 49 - 51	45 - 49 - 51	25 - 28 - 31 45 - 49 - 51	45 - 49 - 51
	Sound Level (SPL)		dB(A)	40 - 42 - 44 60	45 - 49 - 51 65	65	45 - 49 - 51	45 - 49 - 51	45 - 49 - 51	45 - 49 - 51
044	Sound Level (PWL r Dimensions	.) H × W × D		943-950-330(+30)	00	00	1338-1050		00	00
Unit	Weight	IH X W X D	mm kg	70	116	123	116	125	118	131
Oilit	Air Volume	Cooling	m³/min	55.0	110.0	110.0	120.0	120.0	120.0	120.0
	All volulle	Heating	m³/min	55.0	110.0	110.0	120.0	120.0	120.0	120.0
	Sound Level (SPL)	Cooling	dB(A)	47	49	49	50	50	50	50
	Sound Level (SFL)	Heating	dB(A)	48	51	51	52	52	52	52
	Sound Level (PWL)		dB(A)	67	69	69	70	70	70	70
	Operating Current		A A	19.0	26.5	8.0	26.5	9.5	28.0	13.0
	Breaker Size	(IIIaA)	A	25	32	16	32	16	40	16
Ext.	Diameter Diameter	Liquid / Gas	mm	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
Piping	Max. Length	Out-In	m	50	75	75	75	75	75	75
. iping	Max. Height	Out-In	m	30	30	30	30	30	30	30
Guarant	eed Operating Range		°C	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46
Outdoo	rl Operating Range		°C	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-15 ~ +46 -20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21
LOGITATION	11	Heating		-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	-20 ~ +21	+Z1	-20 ~ +21

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

The GWP of R41OA is 2088 in the IPCC 4th Assessment Report.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 Optional air protection guide is required where ambient temperature is lower than –5°C.

*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

PSA-RP SERIES	
STANDARD INVERTER	

	Τ

Туре						Inverter H	eat Pump		
ndoor U	nit			PSA-RI	2100KA		P125KA	PSA-RF	140KA
Outdoor				PUHZ-P100VKA	PUHZ-P100YKA	PUHZ-P125VKA	PUHZ-P125YKA	PUHZ-P140VKA	PUHZ-P140YKA
efrigera						R41			
ower	Source						wer supply		
upply	Outdoor (V/Phase	/Hz)				VKA:230 / Single / 50,			
oolina	Capacity	Rated	kW	9.4	9.4	12.1	12.1	13.6	13.6
		Min - Max	kW	3.7 - 10.6	3.7 - 10.6	5.6 - 13.0	5.6 - 13.0	5.8 - 13.7	5.8 - 13.7
	Total Input	Rated	kW	3.12	3.12	5.02	5.02	6.38	6.38
	EER			3.01	3.01	2.41	2.41	2.13	2.13
		EEL Rank		-	-	-	-	-	-
	Design Load		kW	9.4	9.4	-	-	-	-
	Annual Electricity	Consumption*2	kWh/a	644	644	_	_	_	-
	SEER*4			5.1	5.1	_	_	_	-
		Energy Efficiency Class		A	A	-	-	-	-
	Capacity	Rated	kW	11.2	11.2	13.5	13.5	15.0	15.0
verage		Min - Max	kW	2.8 - 12.5	2.8 - 12.5	4.8 - 15.0	4.8 - 15.0	4.9 - 15.8	4.9 - 15.8
ason)	Total Input	Rated	kW	3.28	3.28	4.80	4.80	4.82	4.82
	COP			3.41	3.41	2.81	2.81	3.11	3.11
		EEL Rank		-	-	_	-	-	-
	Design Load		kW	8.0	8.0	_	-	-	_
	Declared Capacity	at reference design temperature	kW	6.0 (-10°C)	6.0 (-10°C)	_	-	-	-
		at bivalent temperature	kW	7.0 (-7°C)	7.0 (-7°C)	_	-	-	_
		at operation limit temperature	kW	4.5 (-15°C)	4.5 (-15°C)	-	_	-	_
	Back Up Heating (kW	2.0	2.0	-	-	-	-
	Annual Electricity SCOP*4	Consumption*2	kWh/a	2794	2794 4.0	-	-	-	-
		Energy Efficiency Class		4.0 A+	4.0 A+	-	-	-	=
· ovotiv	ng Current (max)	Ellergy Efficiency Class	I A	20.7	12.2	27.2	12.2	30.7	12.2
door	Input	Rated	kW	0.11	0.11	0.11	0.11	0.11	0.11
it	Operating Current		A	0.71	0.71	0.73	0.73	0.73	0.73
	Dimensions <panel></panel>		mm	0.71	0.71		00 - 360	0.73	0.73
	Weight <panel></panel>	III A W A B	ka	46	46	46	46	48	48
	Air Volume [Lo-Mie	-LHi1	m³/min	25 - 28 - 30	25 - 28 - 30	25 - 28 - 31	25 - 28 - 31	25 - 28 - 31	25 - 28 - 31
	Sound Level (SPL)		dB(A)	45 - 49 - 51	45 - 49 - 51	45 - 49 - 51	45 - 49 - 51	45 - 49 - 51	45 - 49 - 51
	Sound Level (PWL		dB(A)	65	65	66	66	66	66
utdoor	Dimensions	H×W×D	mm	981 - 10	50 - 330	981 - 10	50 - 330	981 - 10	50 - 330
nit	Weight		kg	76	78	84	85	84	85
	Air Volume	Cooling	m³/min	79	79	86	86	86	86
		Heating	m³/min	79	79	92	92	92	92
	Sound Level (SPL)	Cooling	dB(A)	51	51	54	54	56	56
		Heating	dB(A)	54	54	56	56	57	57
	Sound Level (PWL)		dB(A)	70	70	72	72	75	75
	Operating Current	(max)	Α	20.0	11.5	26.5	11.5	30.0	11.5
	Breaker Size		А	32	16	32	16	40	16
rt.	Diameter	Liquid / Gas	mm	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
ping	Max. Length	Out-In	m	50	50	50	50	50	50
	Max. Height	Out-In	m	30	30	30	30	30	30
	ed Operating Range		°C	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46	-15 ~ +46
Outdoor	1	Heating	°C	-15 ~ +21	-15 ~ +21	-15 ~ +21	-15 ~ +21	-15 ~ +21	-15 ~ +21

¹ Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with ligher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

3 Optional air protection guide is required where ambient temperature is lower than -5°C.

4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

MULTI SPLISSERIES

SELECTION

Choose from types of indoor units and outdoor units that can run up to six indoor units each. Create the system that best matches room shapes and number of rooms.

Check Indoor Units Refer to the "Indoor Unit Compatibility Table" to check if the indoor unit selected can be used with the outdoor unit selected. (Indoor units not listed in the table cannot be used.) Refer to the "Combination Table" to check if the capacity combination of the indoor unit selected is connectable. (Combinations not listed cannot be connected.) If the desired combination cannot be found, please change either the indoor or outdoor unit to match one of the combinations shown in the tables.

MXZ SERIES

Advancements in the MXZ Series include efficiency and flexibility in system expansion capabilities. The best solution when requiring multi-system air conditioning needs.

MXZ-2F33VF3 MXZ-2F42VF3 MXZ-2F53VF(H)3

3-port 4-port

MXZ-3F54VF3

MXZ-3F68VF3

MX7-4F72VF3

4-port 5-port MXZ-4F83VF MXZ-5F102VF

R32 6-port

MXZ-6F122VF

Units can be used even if it is connected to only one indoor unit (4F83/5F102/6F122)

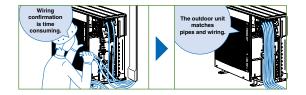
This unit can be used even if it is connected to only one indoor unit. This offers more flexibility for wide range of application that satisfies various customers' demand.

No necessity for refrigerant charging

Depending on the pipe length and the indoor units that are connected, conventional models have required refrigerant charging, but no R32 MXZ model needs to be charged with additional refrigerant. This eliminates troublesome work at the site of installation, and reduces the amount of additional work for the installer.

Handle Up to 6 Rooms with a Single Outdoor Unit

The MXZ Series for R32 offers a ten-system line-up to choose from, ranging between 3.3 and 12.2kW. All of them are compatible with specific M, S and P series indoor units. A single outdoor unit can handle a wide range of building layouts.


Support Functions

Wiring/Piping Correction Function* (3F54/3F68/4F72/4F80/4F83/5F102/6F122)

Simply press a single button to confirm if wiring and piping are properly connected. Wiring errors are corrected automatically when discovered. This eliminates the need to confirm complicated wiring connections when expanding the system. (For details, refer to the outdoor unit installation manual.)

* Function cannot be used when the outdoor temperature is below 0°C.

The correction process requires 10–20 minutes to complete and must be conducted with the unit set to the "Cooling" mode.

Operation Lock

To accommodate specific use applications, cooling or heating operation can be specified when setting the control board of the outdoor unit. A convenient option when a system needs to be configured for exclusive cooling or heating service. (For details, refer to the outdoor unit installation manual.)

Type (Inverter Multi - Split Heat Pump)			Up to 2 Indoor Units			Up to 3 Indoor Units Up to 4 Indoor U			nits	Up to 5 Indoor Units			
Indoor Ur	nit				Please refer to *3								
Outdoor l	Jnit			MXZ-2F33VF3 MXZ-2F42VF3 MXZ-2F53VF3 MXZ-2F53VFH3 MXZ-3F54VF3 MXZ-3F68VF3 MXZ-4F72VF3 MXZ-4F80VF3 MXZ-4F83VF3 MXZ-5F102VF									
Refrigera	nt			R32*1									
Power Source								Out	door power sur	oply			-
Supply	Outdoor (V/Phase/H	łz)			220 - 230 - 240V / Single / 50Hz								
Cooling	Capacity	Rated	kW	3.3	4.2	5.3	5.3	5.4	6.8	7.2	8.0	8.3	10.2
	Input	Rated	kW	0.85	0.98	1.40	1.40	1.32	1.84	1.85	2.25	1.97	2.80
	EER*3	•	•	3.88	4.29	3.79	3.79	4.10	3.70	3.89	3.56	4.21	3.64
	Design Load		kW	3.3	4.2	5.3	5.3	5.4	6.8	7.2	8.0	8.3	10.2
	Annual Electricity	Consumption*2	kWh/a	189	169	216	216	222	301	311	368	342	436
	SEER*3,*5			6.1	8.7	8.6	8.6	8.5	7.9	8.1	7.6	8.5	8.2
		Energy Efficiency (class*3	A++	A+++	A+++	A+++	A+++	A++	A++	A++	A+++	A++
Heating	Capacity	Rated	kW	4.0	4.5	6.4	6.4	7.0	8.6	8.6	8.8	9.3	10.5
(Average		Rated	kW	0.91	0.88	1.56	1.56	1.40	1.91	1.87	2.00	2.00	2.28
Season)	COP*3			4.40	5.11	4.10	4.10	5.00	4.50	4.60	4.40	4.65	4.60
	Design Load		kW	2.7	3.5	3.5	3.5	5.2	6.8	7.0	7.0	7.0	7.4
	Declared at referen	ice design temperature	kW	2.2	2.7	2.7	2.7	4.2	5.7	5.6	5.6	5.8	5.9
	Capacity at bivaler	nt temperature	kW	2.4	2.9	2.9	2.9	4.7	6.4	6.2	6.2	6.2	6.4
	at operat	ion limit temperature	kW	1.6	2.3	2.3	2.1	3.2	4.6	4.8	4.8	4.9	4.9
	Back Up Heating (Capacity	kW	0.5	0.8	0.8	0.8	1.0	1.1	1.4	1.4	1.2	1.5
	Annual Electricity	Consumption*2	kWh/a	944	1065	1065	1089	1583	2321	2389	2389	2087	2205
	SCOP*3,*5			4.0	4.6	4.6	4.5	4.6	4.1	4.1	4.1	4.7	4.7
		Energy Efficiency (Class*3	A+	A++	A++	A+	A++	A ⁺	A ⁺	A+	A++	A++
Operatin	g Current (max)		Α	10.0	12.2	12.2	12.2	18.0	18.0	18.0	18.0	21.4	21.4
	Dimensions	$H \times W \times D$	mm		550 - 8	00 (+69) - 285	(+59.5)	710 - 840 (+30) - 330 (+66)		796 - 98	50 - 330		
Unit	Weight		kg	33	37	37	38	58	58	59	59	62	62
	Air Volume	Cooling	m³/min	31.5	28.4	32.7	32.7	31	35.4	35.4	40.3	57	63
		Heating	m³/min	32.3	33.5	34.7	34.7	31	39.6	42.7	44.1	62	75
	Sound Level (SPL)	Cooling	dB(A)	49	44	46	46	46	48	48	50	49	52
		Heating	dB(A)	50	50	51	51	50	53	54	55	51	56
	Sound Level (PWL)	Cooling	dB(A)	60	59	61	61	60	63	63	65	61	65
	Operating Current	Cooling	Α	4.3 - 4.1 - 3.9	4.9 - 4.7 - 4.5	6.5 - 6.2 - 6.0	6.5 - 6.2 - 6.0	6.0 - 5.7 - 5.5	8.4 - 8.0 - 7.7	8.5 - 8.1 - 7.8	10.3 - 9.9 - 9.5	9.1 - 8.7 - 8.3	12.9 - 12.3 - 11.8
		Heating	Α	4.6 - 4.4 - 4.2	4.4 - 4.3 - 4.1	7.5 - 7.1 - 6.8	7.5 - 7.1 - 6.8				9.2 - 8.8 - 8.4		10.5 - 10.0 - 9.6
	Breaker Size		Α	15	15	15	15	25	25	25	25	25	25
Ext.	Port Diameter	Liquid / Gas	mm	6.35 × 2 / 9.52 × 2	6.35 × 2 / 9.52 × 2	6.35 × 2 / 9.52 × 2	6.35 × 2 / 9.52 × 2	6.35 × 3 / 9.52 × 3	6.35 × 3 / 9.52 × 3	6.35 ×	4 / 12.7 × 1 + 9	.52 × 3	6.35x5/12.7x1+9.52x4
Piping	Total Piping Length (max) m		20	30	30	30	50	60	60	60	70	80	
	Each Indoor Unit Pip	oing Length (max)	m	15	20	20	20	25	25	25	25	25	25
	Max. Height		m	10	15(15)	15(15)	15(15)	15(15)	15(15)	15(15)	15(15)	15	15
	Chargeless Length		m	20	30	30	30	50	60	60	60	70	80
	ed Operating Range	Cooling	°C		-10 ~ +46		-10 ~ +46				+46		
[Outdoor]		Heating	°C		-15 ~ +24		-20 ~ +24			-15 -	+24		

Type (In	verter Multi - Split He	at Pump)		Up to 6 Indoor Units		
Indoor U	nit			Please refer to (*4)		
Outdoor	Unit			MXZ-6F122VF		
Refrigera	int			R32*1		
Power	Source			Outdoor power supply		
Supply	Outdoor (V/Phase/F	łz)	220 - 230 - 240V / Single / 50			
Cooling	Capacity	Rated	kW	12.2		
	Input	Rated	kW	3.66		
	EER*4			3.33		
Heating	Capacity	Rated	kW	14.0		
	Input	Rated	kW	3.31		
	COP*4			4.23		
Operatin	g Current (max)		Α	29.8		
Outdoor	Dimensions H × W × D		mm	1048 - 950 - 330		
Unit	Weight		kg	87		
	Air Volume	Cooling	m³/min	63		
		Heating	m³/min	77		
	Sound Level (SPL)	Cooling	dB(A)	55		
		Heating	dB(A)	57		
	Sound Level (PWL)	Cooling	dB(A)	69		
	Breaker Size		Α	32		
Ext.	Diameter	Liquid	mm	6.35 x 6		
Piping		Gas	mm	12.7 x 1 + 9.52 x 5		
	Total Piping Length	(max)	m	80		
	Each Indoor Unit Piping	Length (max)	m	25		
	Max. Height		m	15		
	Chargeless Length		m	80		
	ed Operating Range	Cooling	°C	-10 ~ +46		
[Outdoor]	Heating	°C	-15 ~ +24		

MXZ SERIES

Advancements in the MXZ Series include efficiency and flexibility in system expansion capabilities. The best solution when requiring multi-system air conditioning needs.

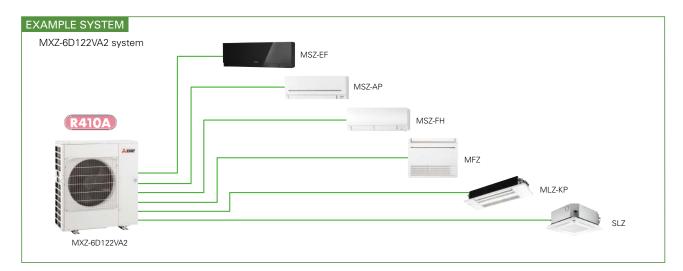
R410A 2-port

MXZ-2D33VA MXZ-2D42VA2 MXZ-2D53VA(H)2

R410A

3-port 4-port MXZ-3E54VA MXZ-3E68VA

MXZ-4E72VA


R410A

MXZ-4E83VA MXZ-5E102VA

R410A

6-port MXZ-6D122VA2

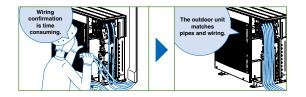
Handle Up to 6 Rooms with a Single Outdoor Unit

The MXZ Series offers a nine-system line-up to choose from, ranging between 3.3 and 12.2kW. All of them are compatible with specific M, S and P series indoor units. A single outdoor unit can handle a wide range of building layouts.

Support Functions -

Wiring/Piping Correction Function* (3E54/3E68/4E72/4E83/5E102/6D122)

Simply press a single button to confirm if wiring and piping are properly connected. Wiring errors are corrected automatically when discovered. This eliminates the need to confirm complicated wiring connections when expanding the system. (For details, refer to the outdoor unit installation manual.)


* Function cannot be used when the outdoor temperature is below 0° C. The correction process requires 10-20 minutes to complete and must be conducted with the unit set to the "Cooling" mode.

Ampere Limit Adjustment*

(4E83/5E102/6D122)

Dipswitch settings can be used to adjust the maximum electrical current for operation. This function is highly recommended for managing energy costs. (For details, refer to the outdoor unit installation manual.)

* Maximum capacity is lowered with the use of this function.

Operation Lock

To accommodate specific use applications, cooling or heating operation can be specified when setting the control board of the outdoor unit. A convenient option when a system needs to be configured for exclusive cooling or heating service. (For details, refer to the outdoor unit installation manual.)

Type (Inv	erter Multi - Split He	at Pump)			Up to 2 In	door Units		Up to 3 In	door Units	Up to 4 In	door Units	Up to 5 Indoor Units
Indoor Unit						F	Please refer to (*					
Outdoor I	Jnit			N: MXZ-2D33VA	N: MXZ-2D42VA2	N: MXZ-2D53VA2	N: MXZ-2D53VAH2	N: MXZ-3E54VA	N: MXZ-3E68VA	N: MXZ-4E72VA	MXZ-4E83VA	MXZ-5E102VA
Refrigera	nt							R410A*1		•	•	•
Power	Source						Οι	ıtdoor power sup	ply			
Supply	Outdoor (V/Phase/F	łz)					220 -	230 - 240V / Sing	ile / 50			
Cooling	Capacity	Rated	kW	3.3	4.2	5.3	5.3	5.4	6.8	7.2	8.3	10.2
		Min - Max	kW	1.1 - 3.8	1.1 - 4.4	1.1 - 5.6	1.1 - 5.6	2.9 - 6.8	2.9 - 8.4	3.7 - 8.8	3.7 - 9.2	3.9 - 11.0
	Input (Indoor+Outdoor)	Rated	kW	0.90	1.00	1.54	1.54	1.35	2.19	2.25	2.44	3.15
	Design Load	•	kW	3.3	4.2	5.3	5.3	5.4	6.8	7.2	8.3	10.2
	Annual Electricity Co	onsumption*2	kWh/a	211	216	262	262	295	425	443	460	537
	SEER*4.*7			5.5	6.8	7.1	7.1	6.4	5.6	5.7	6.3	6.6
		Energy Efficiency (Class*4	А	A++	A++	A++	A++	A+	A+	A++	A++
Heating	Capacity	Rated	kW	4.0	4.5	6.4	6.4	7.0	8.6	8.6	9.3	10.5
(Average		Min - Max	kW	1.0 - 4.1	1.0 - 4.8	1.0 - 7.0	1.0 - 7.0	2.6 - 9.0	2.6 - 10.6	3.4 - 10.7	3.4 - 11.6	4.1 - 14.0
Season)	Input (Indoor+Outdoor)	Rated	kW	0.96	0.93	1.70	1.70	1.59	2.38	2.28	2.00	2.34
	Design Load		kW	2.7	3.2	4.5	4.5	5.0	6.8	7.0	8.7	8.9
	Declared at reference	design temperature	kW	2.1	2.7	3.7	3.6	4.0	5.4	5.6	7.1	7.3
	Capacity at bivalent t	emperature	kW	2.4	3.0	4.0	4.0	4.49	6.0	6.2	7.8	7.9
	at operation limit temperature kW		kW	1.7	2.3	3.3	3.0	3.17	4.4	4.7	6.0	6.3
	Back Up Heating Capacity kW		kW	0.6	0.5	0.8	0.9	1.0	1.4	1.4	1.6	1.6
	Annual Electricity Consumption*2 kWh		kWh/a	926	1065	1507	1546	1751	2466	2516	2889	2958
	SCOP*4.*7			4.1	4.2	4.2	4.1	4.0	3.9	3.9	4.2	4.2
		Energy Efficiency (Class*4	A+	A+	A+	A+	A+	А	А	A+	A+
Max. Ope	erating Current (Indo	or+Outdoor)	Α	10.0	12.2	12.2	12.2	18.0	18.0	18.0	21.4	21.4
Outdoor	Dimensions	$H \times W \times D$	mm		550 - 800(+69	9) - 285 (+59.5)		710 -	840(+30) - 330	(+66)	796 - 98	50 - 330
Unit	Weight	•	kg	32	37	37	38	58	58	59	63	64
	Air Volume	Cooling	m³/min	32.9	27.7	32.9	32.9	42.1	42.1	42.1	55.6	65.1
		Heating	m³/min	33.7	33.3	33.3	33.3	43.0	43.0	43.0	55.6	68.0
	Sound Level (SPL)	Cooling	dB(A)	49	46	50	50	50	50	50	49	52
		Heating	dB(A)	50	51	53	53	53	53	53	51	56
	Sound Level (PWL)	Cooling	dB(A)	63	60	64	64	64	64	64	61	65
	Breaker Size		Α	10	15	15	15	25	25	25	25	25
Ext.	Diameter	Liquid	mm	6.35 × 2	6.35 × 2	6.35 × 2	6.35 × 2	6.35 x 3	6.35 x 3	6.35 x 4	6.35 × 4	6.35 × 5
Piping		Gas	mm	9.52 × 2	9.52 × 2	9.52 × 2	9.52 × 2	9.52 x 3	9.52 x 3	12.7×1+9.52×3	12.7×1+9.52×3	12.7×1+9.52×4
	Total Piping Length (max) m		m	20	30	30	30	50	60	60	70	80
	Each Indoor Unit Pip	oing Length (max)	m	15	20	20	20	25	25	25	25	25
	Max. Height		m	10	15 (10)*3	15 (10)* ³	15 (10)*3	15 (10)*3	15 (10)*3	15 (10)* ³	15 (10)*3	15 (10)*3
	Chargeless Length		m	20	20	20	20	40	40	40	25	0
	ed Operating Range	Cooling	°C	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46	-10 ~ +46
[Outdoor]		Heating	°C	-15 ~ +24	-15 ~ +24	-15 ~ +24	-20 ~ +24	-15 ~ +24	-15 ~ +24	-15 ~ +24	-15 ~ +24	-15 ~ +24

N: Please refer to the NOTE below.

T 0.	THE RESERVE ASSESSED.					
Iype (Inv	verter Multi - Split He	at Pump)		Up to 6 Indoor Units		
				Please refer to (*5)		
Outdoor I				MXZ-6D122VA2		
Refrigera				R410A*1		
Power	Source			Outdoor power supply		
Supply	Outdoor (V/Phase/F			220 - 230 - 240V / Single / 50		
Cooling	Capacity	Rated	kW	12.2		
		Min - Max	kW	3.5 - 13.5		
	Input*5	Rated	kW	3.66		
	EER*6			3.33		
		EEL Rank		A		
Heating	Capacity	Rated	kW	14.0		
		Min - Max	kW	3.5 - 16.5		
	Input*5	Rated	kW	3.31		
	COP*6			4.23		
		EEL Rank		A		
Operatin	g Current (max)*5		Α	26.8		
	Dimensions	$H \times W \times D$	mm	1048-950-330		
Unit	Weight		kg	88		
	Air Volume	Cooling	m³/min	63.0		
		Heating	m³/min	77.0		
	Sound Level (SPL)	Cooling	dB(A)	55		
		Heating	dB(A)	57		
	Sound Level (PWL)	Cooling	dB(A)	70		
	Breaker Size		Α	32		
Ext.	Diameter	Liquid	mm	6.35×6		
Piping		Gas	mm	12.7 × 1 + 9.52 × 5		
	Total Piping Length	(max)	m	80		
	Each Indoor Unit Piping	Length (max)	m	25		
	Max. Height	-	m	15 (10)* ³		
	Chargeless Length		m	30		
Guarante	ed Operating Range	Cooling	°C	-10 ~ +46		
[Outdoor]		Heating	°C	-15 ~ +24		

When connecting the MFZ-KJ series indoor unit(s) to this outdoor unit, charge additional refrigerant according to the instructions in the diagram below.

MXZ-2D33VA

No. of MFZ-KJ indoor units	Pipe length (L) ~20m	Maximum amount of refrigerant
1 unit	100g additional (Total 1250g)	1250g
2 units	Not available (Only one MFZ-KJ series indoor unit can b	e connected.)

MX7-2D42VA2 MX7-2D53VA2 MX7-2D53VAH2

No. of	Pipe lei	Maximum amount	
MFZ-KJ indoor units	~20m	~30m	of refrigerant
1 unit	100g additional (Total 1400g)	100g+{(L-20)m×20g/m)}	1600g
2 units	200g additional (Total 1500g)	200g+{(L-20)m×20g/m)}	1700g

MXZ-3E54VA

No. of	Pipe lei	ngth (L)	Maximum amount
MFZ-KJ indoor units	~40m	~50m	of refrigerant
1 unit	100g additional (Total 2800g)	100g+{(L-40)m×20g/m)}	3000g
2 units	200g additional (Total 2900g)	200g+{(L-40)m×20g/m)}	3100g
3 units	300g additional (Total 3000g)	300g+{(L-40)m×20g/m)}	3200g

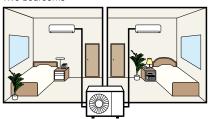
MXZ-3E68VA MXZ-4E72VA

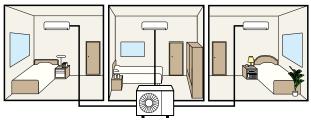
No. of	Pipe lei	ngth (L)	Maximum amount
MFZ-KJ indoor units	~40m	~60m	of refrigerant
1 unit	100g additional (Total 2800g)	100g+{(L-40)m×20g/m)}	3200g
2 units	200g additional (Total 2900g)	200g+{(L-40)m×20g/m)}	3300g
3 units	300g additional (Total 3000g)	300g+{(L-40)m×20g/m)}	3400g

MXZ-HA SERIES

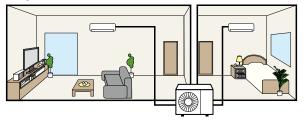
Multi-port outdoor units exclusively for MSZ-HR indoor units.

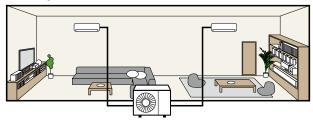
Stylish Design with Flat Panel Front


A stylish flat panel design is employed for the front of the indoor unit. The simple look matches room aesthetics.


Easy to create various combinations

Wide range of simple combinations only possible using multi-port outdoor units.


Two bedrooms



Living room and one bedroom

Wide living room

Type (Inverter Multi - Split Heat Pump)				Up to 2 Indo	Up to 3 Indoor Units				
ndoor Un	it				Please refer to (*4)				
Outdoor (Jnit			MXZ-2HA40VF	MXZ-2HA50VF	MXZ-3HA50VF			
efrigerar	nt			R32*1					
ower	Source				Outdoor power supply				
upply	Outdoor (V/Phase/I	Hz)		220-230-240 / Single / 50					
Cooling	Capacity	Rated	kW	4.0	5.0	5.0			
	Input*4	Rated	kW	1.05	1.52	1.26			
	EER*4	•		3.81	3.29	3.97			
		EEL Rank*4		A	А	A			
	Design Load		kW	4.0	5.0	5.0			
	Annual Electricity	Consumption*2	kWh/a	172	225	241			
	SEER*4.*5		.	8.12	7.78	7.26			
		Energy Efficiency (Class*4	A++	A++	A++			
eating	Capacity	Rated	kW	4.3	6.0	6.0			
Average	Input	Rated	kW	0.91	1.54	1.30			
eason)	COP*4			4.73	3.90	4.62			
		EEL Rank*4		A	A	A			
	Design Load		kW	3.2	3.2	4.0			
	Declared at reference design temperature		kW	2.4	2.4	3.0			
	l	nt temperature	kW	2.9	2.9	3.6			
	at operation limit temperature		kW	2.1	2.1	2.6			
	Back Up Heating		kW	0.8	0.8	1.0			
	Annual Electricity		kWh/a	1043	1043	1394			
	SCOP*4,*5			4.30	4.30	4.02			
	Energy Efficiency (Class*4	A ⁺	A ⁺	A ⁺			
eratin	g Current (max)	, , ,	А	12.2	12.2	18.0			
	Dimensions	$H \times W \times D$	mm	550 - 800 (+69) - 285 (+59.5)	550 - 800 (+69) - 285 (+59.5)	710 - 840 (+30) - 330 (+66)			
nit	Weight	1	kg	37	37	57			
	Air Volume	Cooling	m³/min	28.4	32.7	31.0			
		Heating	m³/min	33.5	34.7	29.1			
	Sound Level (SPL)	Cooling	dB(A)	44	47	46			
		Heating	dB(A)	50	51	50			
	Sound Level (PWL)	Cooling	dB(A)	59	64	61			
	Operating Current	Cooling	А	4.9	6.8	5.6			
		Heating	A	4.6	6.9	5.8			
	Breaker Size		A	15	15	25			
t.	Port Diameter	Liquid / Gas	mm	6.35 × 2 / 9.52 × 2	6.35 × 2 / 9.52 × 2	6.35 × 3 / 9.52 × 3			
ping	Total Piping Length (max)		m	30	30	50			
	Each Indoor Unit Pi		m	20	20	25			
	Max. Height		m	15 (10)*3	15 (10)*³	15 (10)*3			
	Chargeless Length		m	30	30	40			
uarantee	ed Operating Range	Cooling	°C	55	-10 ~ +46				
Outdoor]		Heating	°C		-15 ~ +24				
		produing							

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

The GWP of R32 is 675 in the IPCC 4th Assessment Report

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

*3 If the outdoor unit is installed higher than the indoor unit, max hight is reduced to 10m.

*4 EER/COP, SEER/SCOP values and energy efficiency class are measured when connected to the indoor units listed below.

MX2-14A40VF MSZ-HR25VF + MSZ-HR25VF

MX2-2HA40VF MSZ-HR25VF + MSZ-HR25VF

MX2-3HA50VF MSZ-HR25VF + MSZ-HR25VF + MSZ-HR25VF

MX2-3HA50VF MSZ-HR25VF + MSZ-HR25VF + MSZ-HR25VF

*5 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

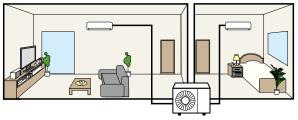
MXZ-DM

Multi-port outdoor units exclusively for MSZ-HJ and DM indoor units.

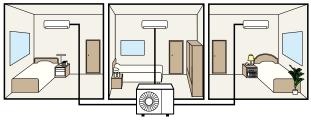
Stylish Design with Flat Panel Front

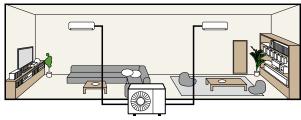
A stylish flat panel design is employed for the front of the indoor unit. The simple look matches room aesthetics.

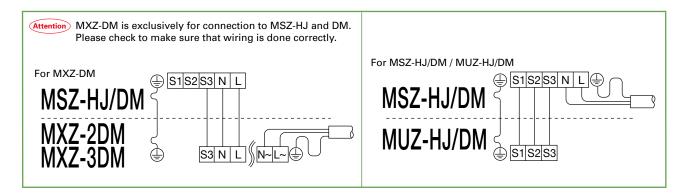
Easy to create various combinations


Wide range of simple combinations only possible using multi-port outdoor units.

Two bedrooms




Living room and one bedroom



Three bedrooms

Wide living room

Type (Inv	erter Multi - Split Hea	at Pump)		Up to 2 Indoor Units	Up to 3 Indoor Units				
	Capacity Rated	, , , , , , , , , , , , , , , , , , ,			efer to (*4)				
				MXZ-2DM40VA	MXZ-3DM50VA				
					0A*1				
Power	1				ower supply				
Supply		lz)			ngle / 50				
Cooling			kW	4.0	5.0				
			kW	1.05	1.13				
		1	7.1.1	3.81	4.42				
		EEL Rank*4		A	A				
			kW	4.0	5.0				
		Consumption*2	kWh/a	226	283				
			,.	6.1	6.1				
	-	Energy Efficiency (Class*4	A++	A++				
Heating			kW	4.3	6.0				
Average			kW	1.16	1.31				
Season)				3.71	4.58				
		EEL Rank*4		A	A				
			kW	3.2	4.0				
		ce design temperature	kW	2.73	3.34				
	Capacity at bivalen	t temperature	kW	3.01	3.73				
			kW	2.27	2.70				
	Back Up Heating (Capacity	kW	0.47	0.66				
			kWh/a	1105	1455				
	SCOP*4,*5			4.0	3.8				
		Energy Efficiency C	Class*4	A ⁺	A				
) Deratin	g Current (max)		Α	12.2	18.0				
Outdoor	Dimensions	$H \times W \times D$	mm	550 - 800 (+69) - 285 (+59.5)	710 - 840 (+30) - 330 (+66)				
Outdoor Unit V	Weight	•	kg	32	57				
	Air Volume	Cooling	m³/min	29.2	37.5				
		Heating	m³/min	31.9	39.6				
	Sound Level (SPL)	Cooling	dB(A)	48	50				
		Heating	dB(A)	52	53				
	Sound Level (PWL)	Cooling	dB(A)	63	64				
	Operating Current	Cooling	Α	5.1	5.0				
		Heating	Α	5.6	5.8				
	Breaker Size		Α	15	25				
Ext.	Port Diameter	Liquid / Gas	mm	6.35 × 2 / 9.52 × 2	6.35 × 3 / 9.52 × 3				
Piping	Total Piping Length	(max)	m	30	50				
-	Each Indoor Unit Pin	ing Length (max)	m	20	25				
			_		15 (10)*3				
	Max. Height		m	15 (10)* ³	15 (10)**				
			m m	15 (10)*3 20	15 (10)*° 40				
	Max. Height Chargeless Length ed Operating Range	Cooling		20					

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

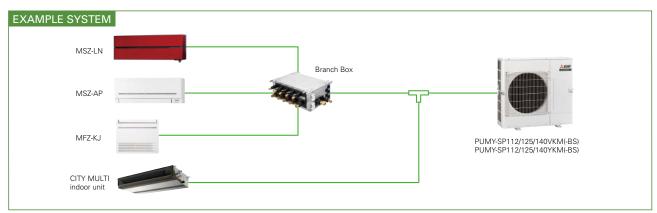
*3 If the outdoor unit is installed higher than the indoor unit, max hight is reduced to 10m.

*4 EER/COP, EEL rank, SEER/SCOP values and energy efficiency class are measured when connected to the indoor units listed below.

MXZ-2DM40VA MSZ-DM25VA + MSZ-DM25VA + MSZ-DM25VA

MXZ-3DM50VA MSZ-DM25VA + MSZ-DM25VA + MSZ-DM25VA

*5 SEER and SCOP are based on 2009/125/EC.Energy-related Products Directive and Regulation(EU) No206/2012.

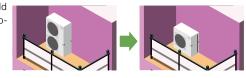

PUMY-SP SERIES

Air conditioning system supports replacement work by simplifying the installation process. Ideal for supporting renewal needs at small offices and stores, home offices, etc.

R410A

PUMY-SP112/125/140VKM(-BS) PUMY-SP112/125/140YKM(-BS)

Light weight and compact size


Compact design fits into narrow outdoor unit space of condominiums and offices. Light weight design facilitates easy installation and transportation.

Unobstructive, compact, and easy to hide from view

Conventional 2-fan type outdoor units may spoil the view. Due to its compact size, the new outdoor fan unit can be installed in loca-

tions that would have been inappropriate.

Easy installation and transportation

The reduced weight and height allow for better transportation performance. Carrying and installing become easier.


could not before.

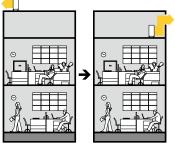
Industry's top energy efficiency*

Even with its compact size and light weight, it has a high EER and COP. Costs are reduced with the industry's best energy saving abilities.

* As of sep.2017.Among VRF outdoor unit of 1fan. (An incompany investigation)

Super silent mode*

Noise level can be reduced up to 10dB(A). This allows you to operate the unit even in the night in a residential zone.

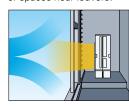

- *Capacity reduction differs by mode setting.
- *PAC-SC36NA-E is required to activate Super Silent mode

Rear piping is available

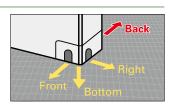
Freedom with layout due to its piping pullout locations in four directions

The in-door unit allows piping from any four directions; front, back, bottom, or right. This enables easier horizontal connection for collective layout.

The out-door unit with an expanded piping layout flexibility greatly improves piping workability.


The installation location is flexible

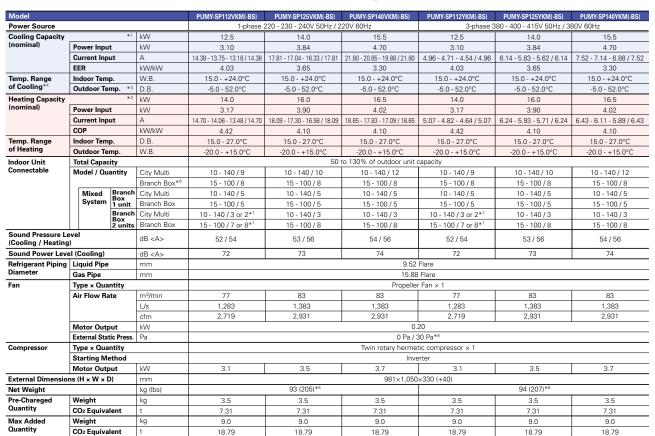
thanks to its 30Pa static pressure.


You can install it in locations that you

An external static pressure of 30Pa

An external static pressure of 30Pa allows outdoor unit to be installed on balconies in high-rise building or spaces near louvers.

*Noise level will increase when using this function.



*1.*2 Nominal conditions

	Indoor	Outdoor	Piping Length	Level Difference	External Static Press. (Outdoor Unit)
Cooling	27°C DB / 19°C WB	35°C	7.5m (24 - 9 / 16ft.)	0m (0ft)	0 Pa
Heating	20°C DB	7°C DB / 6°C WB	7.5m (24 - 9 / 16ft.)	0m (0ft)	0 Pa

^{*3 10} to 52°C; incase of connecting PKFY-P15/P20/P25VBM, PFFY-P20/P25/P32VKM, PFFY-P20/P25/P32VLE(R)M indoor unit and M series indoor unit with connection kit and M series, S series, and P series type indoor unit with branch box.

*4 Up to 11 units when connecting via 2 branch boxes.

*5 94 (207), for PUMY-SP112/125/140VKM-BS

*6 95 (209), for PUMY-SP112/125/140VKM-BS

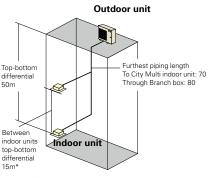
*7 When connecting 7 indoor units via branch box, connectable City Multi indoor units are 3; connecting 8 indoor units via branch box, connectable City Multi indoor units are 2.

^{*9} At least 2 indoor units must be connected when using branch box

Туре				Brand	h Box				
Model Name	•			PAC-MK54BC PAC-MK3					
Connectable	Number of Indo	or Units		Maximum 5	Maximum 3				
Power Supp	ly (from outdoor	unit)		~ / N, 220 / 230 / 240 V, 50 Hz, ~ / N, 220 / 230 V, 60 Hz					
Input			kW	0.003					
Running Current			А	0.05 (N	Лах. 6)				
Dimensions		$H \times W \times D$	mm	170 × 45	50 × 280				
Weight			kg	7.4	6.7				
Piping	Branch	Liquid	mm	ø6.35 × 5	ø6.35 × 3				
(Flare)	[Indoor Side]	Gas	mm	ø9.52 × 4, ø12.7 × 1	ø9.52 × 3				
	Main	Liquid	mm	ø9	.52				
	[Outdoor Side]	Gas	mm	ø15	5.88				

^{*} The piping connection size differs according to the type and capacity of outdoor/indoor units.

Match the piping connection size of branch box with outdoor/indoor unit. If the piping connection size of branch box does not match the piping connection size of outdoor/indoor unit, use optional different-diameter (deformed) joints to the branch box side. (Connect deformed joint directly to the branch box side.)


<Branch box compatible table>

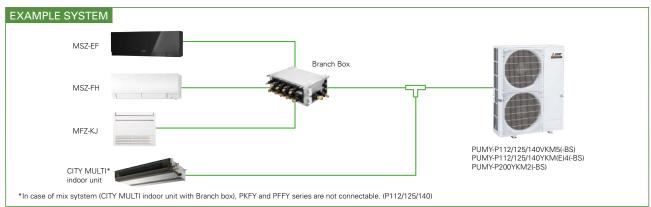
Outdoor unit	Branch box	PAC-MK31/ 51BC(B)	PAC-MK32/ 52BC(B)	PAC-MK33/ 53BC(B)	PAC-MK34/ 54BC
Outdoor unit	PUMY-SP112/125/140V/ YKM(-BS)	✓	N/A	N/A	N/A
1fan	PUMY-SP112/125/140V/ YKMR1(-BS)	N/A	N/A	✓	✓
	PUMY-SP112/125/140V/ YKM(-BS)R2	N/A	N/A	✓	✓
Outdoor unit 2fan	PUMY-P112/125/140V/YKM4(-BS)	√*	✓	✓	✓
	PUMY-P112/125/140V/YKM4R1(-BS)	√*	✓	✓	✓
	PUMY-P112/125/140VKM5(-BS)	√*	✓	✓	✓
	PUMY-P112/125/140V/YKM4(-BS)R2	√*	✓	✓	✓
Outdoor unit	PUMY-P200YKM2(-BS)	✓	✓	✓	✓
8HP	PUMY-P200YKM2R1(-BS)	✓	✓	✓	✓
	PUMY-P200YKM2(-BS)R2	✓	✓	✓	✓

^{*}ecodan is NG

[SP112-140V/YKM(-BS)]

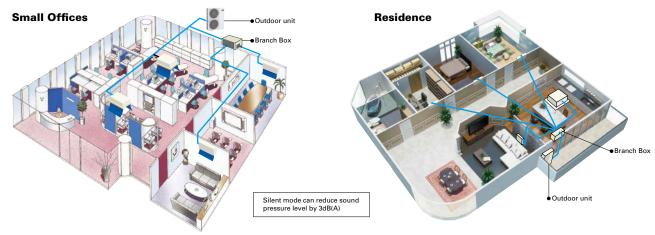
• • • • • • • • • • • • • • • • • • • •			
Refrigerant Piping Lengths	Maximum meters	Vertical differentials between units	Maximum meters
Total length	120	Indoor/outdoor (outdoor higher)	. 50
Maximum allowable length	To City Multi indoor	Indoor/outdoor (outdoor lower)	. 30
	unit: 70	Indoor/indoor	· 15*
1	Through Branch box: 80		

*In case of branch box connection: 12m


^{*8 0} Pa as initial setting

PUMY-P SERIES

Air conditioning system supports replacement work by simplifying the installation process. Ideal for supporting renewal needs at small offices and stores, home offices, etc.


PUMY-P112/125/140VKM5(-BS) PUMY-P112/125/140YKM(E)4(-BS) PUMY-P200YKM2(-BS)

The two-pipe zoned system designed for Heat Pump Operation

PUMY series make use of a two-pipe refrigerant system, which allows for system changeover from cooling to heating, ensuring that a constant indoor climate is maintained in all zones. The compact outdoor unit utilizes R410A refrigerant and an INVERTER-driven compressor to use energy

With a wide range of indoor unit line-up in connection with a flexible piping system, PUMY series can be configured for all applications. Up to 12 indoor units can be connected with up to 130% connected capacity to maximize engineer's design options. This feature allows easy air conditioning in each area with convenient individual controllers.

·		·		Maxim	um Meters	·		
			Only City Multi*1	Only Branch Box	Mixed System (City Multi*	Indoor Unit + Branch Box)		
			Indoor Unit	Connection	City Multi*1 Indoor Unit	Via Branch Box		
P112/125/140	Refrigerant Piping Length	Total Length	300	150	240 (2 Branch boxes	/ 300 (1 Branch box)		
		Maximum Allowable Length	150 (175 equivalent)	80	85 (95 equivalent)	80		
		Farthest Indoor From First Branch	30	55	30	55		
	Vertical Differentials	Indoor/Outdoor (Outdoor higher)	50	50	5	0		
	Between Units	Indoor/Outdoor(Outdoor Lower)	40*2	40	4	0		
		Indoor/Indoor	15*3	15*3	15*3			
P200	Refrigerant Piping Length	Total Length	150	150	19	50		
		Maximum Allowable Length	80 (90 equivalent)	80	80 (90 equivalent)	80		
-		Farthest Indoor From First Branch	30	55	30	55		
	Vertical Differentials	Indoor/Outdoor (Outdoor higher)	50	50	50			
	Between Units	Indoor/Outdoor (Outdoor Lower)	40	40	4	40		
		Indoor/Indoor	15*3	15*3	15	*3		

30Pa external static pressure* Option (requires PAC-SJ71FM-E)

An external static pressure of 30Pa enables the outdoor unit to be installed on balconies in high-rise building or spaces near louvers.

- *PUMY-P112/125/140VKM5(-BS), PUMY-P112/125/140YKM(E)4(-BS) only.
- * Noise level will increase when using this function

^{*1} Include system with connection kit *2 In case of including PKPY or PFFY, height between units is 30m. *3 In case of branch box connection: 12m

Model			PUMY-P112VKM5(-BS)	PUMY-P125VKM5(-BS)	PUMY-P140VKM5(-BS)	PUMY-P112YKM4(-BS)	PUMY-P125YKM4(-BS)	PUMY-P140YKM4(-BS)	PUMY-P200YKM2(-BS)
Power Source				ase 220 - 230 - 240V			3-phase 380 - 400		, , , , , , , , , , , , , , , , , , , ,
Cooling Capacity	*1	kW	12.5	14.0	15.5	12.5	14.0	15.5	22.4
(nominal)	Power Input	kW	2.79	3.46	4.52	2.79	3.46	4.52	6.05
	Current Input	А	12.87 - 12.32 - 11.80	15.97 - 15.27 - 14.64	20.86 - 19.95 - 19.12	4.99 - 4.74 - 4.57	5.84 - 5.55 - 5.35	7.23 - 6.87 - 6.62	9.88 - 9.39 - 9.05
	EER	kW/kW	4.48	4.05	3.43	4.48	4.05	3.43	3.70
Cooling Capacity (nominal) P C E Temp. Range of Cooling Heating Capacity (nominal) P C C C C Temp. Range of Heating Indoor Unit Connectable Sound Pressure Leve (measured in anechoole Refrigerant Piping Diameter G	Indoor Temp.	W.B.	15.0 - 24.0°C	15.0 - 24.0°C	15.0 - 24.0°C	15.0 - 24.0°C	15.0 - 24.0°C	15.0 - 24.0°C	15.0 - 24.0°C
	Outdoor Temp.*3	D.B.	-5.0 - 52.0°C	-5.0 - 52.0°C	-5.0 - 52.0°C	-5.0 - 52.0°C	-5.0 - 52.0°C	-5.0 - 52.0°C	-5.0 - 52.0°C
Heating Capacity	*2	kW	14.0	16.0	18.0	14.0	16.0	18.0	25.0
(nominal)	Power Input	kW	3.04	3.74	4.47	3.04	3.74	4.47	5.84
	Current Input A		14.03 - 13.42 - 12.86	17.26 - 16.51 - 15.82	20.63 - 19.73 - 18.91	5.43 - 5.16 - 4.98	6.31 - 6.00 - 5.78	7.15 - 6.79 - 6.55	9.54 - 9.06 - 8.74
	COP	kW/kW	4.61	4.28	4.03	4.61	4.28	4.03	4.28
Temp. Range	Indoor Temp.	D.B.	15.0 - 27.0°C	15.0 - 27.0°C	15.0 - 27.0°C	15.0 - 27.0°C	15.0 - 27.0°C	15.0 - 27.0°C	15.0 - 27.0°C
of Heating	Outdoor Temp.	W.B.	-20.0 - 15.0°C	-20.0 - 15.0°C	-20.0 - 15.0°C	-20.0 - 15.0°C	-20.0 - 15.0°C	-20.0 - 15.0°C	-20.0 - 15.0°C
Indoor Unit	Total Capacity	•							
Connectable	Model / Quantity	City Multi	10 - 140 / 9	10 - 140 / 10	10 - 140 / 12	10 - 140 / 9	10 - 140 / 10	10 - 140 / 12	10 - 200 / 12
		Branch Box*5	15 - 100 / 8	15 - 100 / 8	15 - 100 / 8	15 - 100 / 8	15 - 100 / 8	15 - 100 / 8	15 - 100 / 8
	Mixed Branch	City Multi	10 - 140 / 5	10 - 140 / 5	10 - 140 / 5	10 - 140 / 5	10 - 140 / 5	10 - 140 / 5	10 - 200 / 5
	System 1 unit	Branch Box	15 - 100 / 5	15 - 100 / 5	15 - 100 / 5	15 - 100 / 5	15 - 100 / 5	15 - 100 / 5	15 - 100 / 5
	Branch Box	City Multi	10 - 140 / 3 or 2*4	10 - 140 / 3	10 - 140 / 3	10 - 140 / 3 or 2*4	10 - 140 / 3	10 - 140 / 3	10 - 200 / 3
	2 units	Branch Box	15 - 100 / 7 or 8*4	15 - 100 / 8	15 - 100 / 8	15 - 100 / 7 or 8*4	15 - 100 / 8	15 - 100 / 8	15 - 100 / 8
		dB <a>	49 / 51	50 / 52	51 / 53	49 / 51	50 / 52	51 / 53	56 / 61
	Liquid Pipe	mm		•	9.52	Flare	•		9.52*6 Flare
Diameter	Gas Pipe	mm			15.88	Flare			19.1 Flare
Fan	Type × Quantity	•			Propeller	Fan × 2			
	Air Flow Rate	m³/min			11	10			139
		L/s			1,8	183			2,316
		cfm			3,8	184			4,908
	Motor Output	kW			0.074 +	+ 0.074			0.20 + 0.20
Compressor	Type × Quantity				Scroll hermetic	compressor x 1			
	Starting Method				Inve	erter			
	Motor Output	kW	2.9	3.5	3.9	2.9	3.5	3.9	5.3
External Dimension	ns (H × W × D)	mm			1,338×1,050	0×330 (+40)			
Weight		kg		123			125		141

*1,*2 Nominal conditions

	Indoor	Outdoor	Piping Length	Level Difference
Cooling	27°C DB / 19°C WB	35°C	7.5m	0m
Heating	20°C DB	7°C DB / 6°C WB	7.5m	0m

*3 10 to 52°C D.B.: When connecting PKFY-P15/20/25VBM, PFFY-P20/25/32VKM and PFFY-P20/25/32VLE(R)M, PEFY-P-VMA3, M, S and P series indoor unit.

*4 When connecting 7 indoor units via branch box, connectable City Multi indoor units are 3; connecting 8 indoor units via branch box, connectable indoor units are 2.

*5 At least 2 indoor units must be connected when using branch box.

*6 Liquid pipe diameter: 12.7mm when piping length is more than 60m.

Model			PUMY-P112YKME4(-BS)	PUMY-P125YKME4(-BS)	PUMY-P140YKME4(-BS)						
Description Power Input Power Input				3-phase 380 - 400 - 415V 50Hz							
Cooling Capacity	*1	kW	12.5	14.0	15.5						
nominal)	Power Input	kW	2.79	3.46	4.52						
	Current Input	А	4.99 / 4.74 / 4.57	5.84 / 5.55 / 5.35	7.23 / 6.87 / 6.62						
	EER	kW/kW	4.48	4.05	3.43						
emp. Range	Indoor Temp.	W.B.		15 to 24°C							
Cooling	Outdoor Temp.*3	D.B.		−5 to 52°C							
	*2	kW	14.0	16.0	18.0						
ominal)	Power Input	kW	3.04	3.74	4.47						
	Current Input	A	5.43 / 5.16 / 4.98	6.31 / 6.00 / 5.78	7.15 / 6.79 / 6.55						
	СОР	kW/kW	4.61	4.28	4.03						
	Indoor Temp.	D.B.									
Heating	Outdoor Temp.	W.B.	−20 to 15°C								
door Unit	Total Capacity		50 to 130% of outdoor unit capacity								
nnectable	Model / Quantity	City Multi	10 - 140 / 9	10 - 140 / 10	10 - 140 / 12						
		Branch Box*5	15 - 100 / 8	15 - 100 / 8	15 - 100 / 8						
	Mixed Branch	City Multi	10 - 140 / 5	10 - 140 / 5	10 - 140 / 5						
	System Sox 1 unit	Branch Box	15 - 100 / 5	15 - 100 / 5	15 - 100 / 5						
	Branch Box	City Multi	10 - 140 / 3 or 2*4	10 - 140 / 3	10 - 140 / 3						
	2 units	Branch Box	15 - 100 / 7 or 8*4	15 - 100 / 8	15 - 100 / 8						
ound Pressure I leasured in and		dB <a>	49 / 51	50 / 52	51 / 53						
frigerant Piping	Liquid Pipe	mm		9.52 Flare							
ameter	Gas Pipe	mm		15.88 Flare							
n	Type × Quantity		Propeller Fan × 2								
	Air Flow Rate	m³/min		110							
		L/s		1,833							
		cfm		3,884							
	Motor Output	kW		0.074 + 0.074							
mpressor	Type × Quantity			Scroll hermetic compressor × 1							
	Starting Method			Inverter							
	Motor Output	kW	2.9	3.5	3.9						
kternal Dimensi	ons (H × W × D)	mm		1,338×1,050×330 (+40)							
/eight		kg		136							

*1,*2 Nominal conditions

	Indoor	Outdoor	Piping Length	Level Difference
Cooling	27°C DB / 19°C WB	35°C	7.5m	0m
Heating	20°C DB	7°C DB / 6°C WB	7.5m	0m

*3 10 to 52°C D.B.: When connecting PKFY-P15/20/25VBM, PFFY-P20/25/32VKM and PFFY-P20/25/32VLE(R)M, PEFY-P-VMA3, M, S and P series indoor unit.
*4 When connecting indoor units via branch box, connectable City Multi indoor units are 3; connecting 8 indoor units via branch box, connectable indoor units are 2.
*5 At least 2 indoor units must be connected when using branch box.

Туре				Branc	h Box				
Model Name)			PAC-MK54BC	PAC-MK34BC				
Connectable	Number of Indoo	or Units		Maximum 5	Maximum 3				
Power Supply (from outdoor unit)				~ / N, 220 / 230 / 240 V, 50 Hz, ~ / N, 220 / 230 V, 60 Hz					
Input			kW	0.003					
Running Current A			А	0.05 (Max. 6)					
Dimensions		$H \times W \times D$	mm	170 × 45	50 × 280				
Weight			kg	7.4	6.7				
Piping	Branch	Liquid	mm	ø6.35 × 5	ø6.35 × 3				
(Flare)	[Indoor Side]	Gas	mm	ø9.52 × 4, ø12.7 × 1	ø9.52 × 3				
	Main	Liquid	mm	ø9.	52				
	[Outdoor Side]	Gas	mm	ø15	i.88				

^{*} The piping connection size differs according to the type and capacity of outdoor/indoor units.

Match the piping connection size of branch box with outdoor/indoor unit. If the piping connection size of branch box does not match the piping connection size of outdoor/indoor unit. us optional different-diameter (deformed) joints to the branch box side. (Connect deformed joint directly to the branch box side.)

Indoor Unit Compatibility Table

Possible combinations of outdoor units and indoor units are shown below.

			MXZ-*3				MXZ-*3								MXZ-*3	
oor Unit			2F33VF3	2F42VF3	2F53VF(H)3	2F53VFHZ	3F54VF3	3F68VF3	4F72VF3	4F80VF3	4F83VF	4F83VFHZ		6F122VF	2HA50VF	3HA
series	Wall-	MSZ-LN18VG(W)(V)(R)(B)						•								
	Mounted	MSZ-LN25VG(W)(V)(R)(B)					•	•		•						
		MSZ-LN35VG(W)(V)(R)(B)						•								
		MSZ-LN50VG(W)(V)(R)(B)														
		MSZ-LN18VG2(W)(V)(R)(B)														
		MSZ-LN25VG2(W)(V)(R)(B)		•		•		•				•		•		
		MSZ-LN35VG2(W)(V)(R)(B)			•			•				•	•	•		
		MSZ-LN50VG2(W)(V)(R)(B)					•	•	•	•	•	•	•	•		
		MSZ-FT25VG														
		MSZ-FT35VG														
		MSZ-FT50VG														
		MSZ-AP15VG	•	•	•	•	•	•	•	•	•	•	•	•		
		MSZ-AP20VG				•										
		MSZ-AP25VG(K)	•	•	•	•	•	•	•	•		•	•	•		
		MSZ-AP35VG(K)		•		•	•		•		•		•	•		
		MSZ-AP42VG(K)			•	•	•	•	•	•	•	•	•	•		
		MSZ-AP50VG(K)					•				•					
		MSZ-AP60VG(K)			-			•	•	•	•	•	•	•		
								-	-	-			•			
		MSZ-AP71VG(K)			•	-			•	-				•		
		MSZ-EF18VG(K)(W)(B)(S)	•	•		•	•	•		•	•	•				
		MSZ-EF22VG(K)(W)(B)(S)	•	•	•	•	•	•	•			•	•	•		
		MSZ-EF25VG(K)(W)(B)(S)	•	•	•	•	•	•	•	•	•	•	•	•		
		MSZ-EF35VG(K)(W)(B)(S)			•	•		•	•	•		•	•	•		
		MSZ-EF42VG(K)(W)(B)(S)			•	•	•	•	•	•	•	•	•	•		
		MSZ-EF50VG(K)(W)(B)(S)				•		•				•		•		
		MSZ-BT20VG(K)	•	•	•	•	•	•	•	•		•	•	•		
		MSZ-BT25VG(K)		•		•		•				•				
		MSZ-BT35VG(K)		•		•		•				•		•		
		MSZ-BT50VG(K)														
		MSZ-HR25VF														
		MSZ-HR35VF														
		MSZ-HR42VF													•	
		MSZ-HR50VF														
		MSZ-HR60VF														
		MSZ-HR71VF														
	Floor-	MFZ-KT25VG	•	•	•	•	•	•	•	•	•	•	•	•		
	Standing	MFZ-KT35VG		•							•	•		•		
		MFZ-KT50VG					•	•	•	•	•	•	•	•		
	1-way	MLZ-KP25VF	•			•										
	Cassette	MLZ-KP35VF		•	•	•	•	•	•	•	•	•	•	•		
		MLZ-KP50VF					•		•		•		•	•		
eries	2×2	SLZ-M15FA	•	•	•	•	•			•	•	•	•	•		
en les	Cassette				_	_		_	_		•			•		
		SLZ-M25FA		•	•	•	•	•	•				_			
		SLZ-M35FA		•	•	•	•	•	•	•	•	•	•	•		
	Coilie -	SLZ-M50FA			-		•	•	•	•		•	•	•		
	Ceiling- Concealed	SEZ-M25DA*2	•	•	•	•		•	•	•		•	•	•		
	20000100	SEZ-M25DAL*2	•	•	•	•	•	•	•			•	•	•		
		SEZ-M35DA		•	•	•	•	•	•	•	•	•	•	•		
		SEZ-M35DAL		•	•	•		•	•	•		•	•	•		
		SEZ-M50DA					•	•	•	•	•	•	•	•		
		SEZ-M50DAL					•	•	•	•	•	•	•	•		
		SEZ-M60DA						•	•	•		•	•	•		L
		SEZ-M60DAL						•	•	•	•	•	•	•		
		SEZ-M71DA										•	•	•		
		SEZ-M71DAL									•	•	•	•		
	Ceiling-	PCA-M50KA					•	•	•	•						
eries		PCA-M60KA						•								
eries	Suspended															
eries	Ousperided	PCA-M71KA		1			• *1	* 1	* 1							
eries		PCA-M71KA PEAD-M50.IA						-	-	-						
eries	Ceiling- Concealed	PEAD-M50JA						@ *4	@ *4							
eries	Ceiling-	PEAD-M50JA PEAD-M50JAL					•1	• *1	• *1	•						
eries	Ceiling-	PEAD-M50JA PEAD-M60JA						• *1	• *1	•						
eries	Ceiling-	PEAD-M50JA PEAD-M50JAL						●*1	•*1	•						

^{*1} Maximum total current of indoor units: 3A or less.
*2 SEZ-M25 cannot be connected with MXZ-2F/3F/4F when total capacity of connected indoor units is equivalent to outdoor capacity (capacity ratio is 1).
*3 MXZ outdoor units are not designed to operate with a single indoor unit with one-to-one piping work. Please install at least two indoor units.

■ MXZ Series R410A

Possible combinations of outdoor units and indoor units are shown below.

	_		MXZ-*3	MXZ-*3	MXZ-*3		MXZ-*3	odels Heat MXZ-*3	MXZ-*3	MXZ-*3	MXZ-*3	MXZ-*3		MXZ-*3	
oor Unit			2D33VA	2D42VA2	2D53VA(H)2	2E53VAHZ	3E54VA	3E68VA	4E72VA	4E83VA	4E83VAHZ	5E102VA	6D122VA2	2DM40VA	3DM5
series	Wall- Mounted	MSZ-LN18VG(W)(V)(R)(B)													
	Mountou	MSZ-LN25VG(W)(V)(R)(B)	•	•	•	•	•	•	•	•	•	•	•		
		MSZ-LN35VG(W)(V)(R)(B)		•	•	•	•	•			•		•		
		MSZ-LN50VG(W)(V)(R)(B)													
		MSZ-AP15VG*7	•		•				•	•	•	•	•		
		MSZ-AP20VG*7	•	•	•	•	•	•	•	•	•	•	•		
		MSZ-AP25VG*7													
		MSZ-AP35VG*7		•	•	•	•	•	•	•		•	•		
		MSZ-AP42VG*7			•			•							
		MSZ-AP50VG*7			•	•		•	•	•	•	•	•		
		MSZ-EF18VG(W)(B)(S)			•								•		
		MSZ-EF22VG(W)(B)(S)			•	•		•				•	•		
		MSZ-EF25VG(W)(B)(S)			•			•							
		MSZ-EF35VG(W)(B)(S)													
		MSZ-EF42VG(W)(B)(S)			•	•		•					•		
		MSZ-EF50VG(W)(B)(S)			•	•		•		•	•	•	•		
		MSZ-FH25VE2			•	•		•							
		MSZ-FH35VE2			•	•		•		•			•		
		MSZ-FH50VE2								•		•	•		
		MSZ-SF15VA	•	•	•	•	•	•	•	•		•	•		
		MSZ-SF20VA				•				•			•		
		MSZ-SF25VE3			•	•	•	•		•	•	•	•		
		MSZ-SF35VE3							•						
		MSZ-SF42VE3			•	•	•	•	•	•	•	•	•		
		MSZ-SF50VE3							•	•					
		MSZ-GF60VE2						•	•	•		•	•		
		MSZ-GF71VE2								•		•			
		MSZ-DM25VA													
														•	
		MSZ-DM35VA												•	
		MSZ-HJ25VA												•	
		MSZ-HJ35VA													•
	_	MSZ-HJ50VA	- *4*E	- *4	- *4	_	- *4	- *4	_	_	_	_	_		-
	Floor- Standing	MFZ-KJ25VE2	*4*5	*4	*4		*4	*4							
	Standing	MFZ-KJ35VE2		•*4	•*4	•	*4	•*4		•			•		
		MFZ-KJ50VE2					*4	•*4							
	1-way Cassette	MLZ-KP25VF	•	•	•	•	•	•		•	•	•	•		
	Casselle	MLZ-KP35VF						•							
		MLZ-KP50VF					•	•		•	•	•	•		
eries	2×2	SLZ-M15FA													
	Cassette	SLZ-M25FA													
		SLZ-M35FA													
		SLZ-M50FA						•				•	•		
	Ceiling-	SEZ-M25DA*2													
	Concealed	SEZ-M25DAL*2													
		SEZ-M35DA													
		SEZ-M35DAL			•	•		•		•			•		
		SEZ-M50DA					•	•	•	•		•	•		
		SEZ-M50DAL					•	•	•	•		•	•		
		SEZ-M60DA						•		•		•			
		SEZ-M60DAL						•		•		•	•		
		SEZ-M71DA								•	•	•	•		
		SEZ-M71DAL								•	•	•	•		
eries	4-way	PLA-M50EA						•		•		•	•		
	Cassette	PLA-M60EA						•	•	•	•*6	•	•		
		PLA-M71EA								•	•*6	•	•		
	Ceiling-	PCA-M50KA					•	•	•	•	*6	•	•		
	Suspended	PCA-M60KA								•	*6	•			
		PCA-M60KA PCA-M71KA								•	*6		•		
	Coiline	PEAD-M50JA					•*1	● *1	• *1	• 1	*1*6	• 1	*1		
	Ceiling- Concealed	PEAD-M50JA PEAD-M50JAL													
	Johnsaled						*1	●*1	• *1	●*1	*1*6	●*1	●*1		
		PEAD-M60JA								●*1	●*1*6 ● *4*0	●*1	• *1		
		PEAD-M60JAL								* 1	*1*6	*1	*1		
		PEAD-M71JA								• *1	*1*6	●*1	*1		
		PEAD-M71JAL								*1	*1*6	●*1	● *1		
SEZ-KD2 MXZ outo When cor	5 cannot be cloor units are	of indoor units: 3A or less. onnected with MXZ-2D(E)/3I not designed to operate with IFZ-KJ Series indoor unit, ac	a single ind Iditional refi	door unit wi	th one-to-or	ne piping wo r details, ple	ork. Please	install at lea	ast two indo		pacity ratio	is 1).			

■ PUMY-SP Series

Branch Box Connection Compatibility Table

0	T	Model Name						Capacity					
Series	Type	Model Name	15	18	20	22	25	35	42	50	60	71	100
M series	Wall-Mounted	MSZ-LN•VG2						•		•			
		MSZ-AP•VG(K)	● *1		●*1		•*1	● *1	• *1	● *1			
		MSZ-FH•VE2								•			
		MSZ-EF•VG(K)		• *1		● *1	* 1	● *1	• *1	● *1			
		MSZ-SF•VA											
		MSZ-SF•VE3							•	•			
		MSZ-GF•VE2									•		
	Floor-Standing	MFZ-KT•VG					• *1	● *1		● *1			
	1-way Cassette	MLZ-KP•VF					• *1	* 1		● *1			
S series	Ceiling-Concealed	SEZ-M•DA(L)					• *1	● *1		• *1	• *1	• *1	
	2×2 Cassette	SLZ-M•FA	● *1				• *1	● *1		● *1			
P series	Ceiling-Suspended	PCA-M•KA						•		•	•	•	•
	4-way Cassette	PLA-M•EA						● *1		● *1	* 1	• *1	●*1
	Ceiling-Concealed	PEAD-M•JA(L)								● *1	● *1	• *1	●*1

^{*1} Connectable outdoor units are PUMY-SP112/125/140V(Y)KMR1(R2)(-BS).TH only.

LEV Kit Connection Compatibility Table

Series	I/II Tuno	Model Name					Сар	acity				
Series	I/U Type	woder name	15	18	20	22	25	35	42	50	60	71
M series	Wall-Mounted	MSZ-LN•VG2					* 1	• *1		• *1		
		MSZ-AP•VG(K)	● *1		• *1		• *1	• *1	• *1	● *1		
		MSZ-FH•VE2										
		MSZ-EF•VG(K)		* 1		* 1	* 1	* 1	* 1	● *1		
		MSZ-SF•VA										
		MSZ-SF•VE3						•		•		
	Floor-Standing	MFZ-KT•VG					• *1	• *1		* 1		

^{*1} Connectable outdoor units are PUMY-SP112/125/140V(Y)KMR1(R2)(-BS).TH only.

CITY MULTI Indoor Unit Compatibility Table for PUMY-SP112/125/140

Series	Type	Model Name							Cap	acity						
Series	туре	Model Name	P10	P15	P20	P25	P32	P40	P50	P63	P71	P80	P100	P125	P140	P200
	1-way cassette	PMFY-P•VBM-E			•	•	•	•								
MULTI series	2-way cassette	PLFY-P•VLMD-E			•	•	•	•	•	•		•	•	•		
4	4-way cassette	PLFY-M•VEM-E				•		•	•	•		•	•	•		
		PLFY-EP•VEM-E *3							•	•		•				
		PLFY-P•VFM-E							•							
(Ceiling-concealed	PEFY-P•VMR-E-L/R														
		PEFY-P•VMS1(L)-E														
		PEFY-M•VMA(L)-A *2							•		•	•				
		PEFY-P•VMA3-E*1														
		PEFY-P•VMHS-E							•			•				
		PEFY-P•VMHS-E-F *4														
(Ceiling-suspended	PCFY-P•VKM-E														
١	Wall-mounted	PKFY-P•VLM-E				•			•							
		PKFY-P•VKM-E														
F	Floor-standing	PFFY-P•VKM-E2				•		•								
		PFFY-P•VLEM-E			•	•	•		•	•						
		PFFY-P•VCM-E			•	•										
L	Lossnay								GUF-50/1	00RD(H)4						

^{*1} Authorized connectable indoor units are as follows:
PUMY-SP112: PEFY-P25x2+P32x2, PUMY-SP125: PEFY-P25x1+P32x3, PUMY-SP140: PEFY-P32x2+P40x2
*2 Do not connect Lossnay remote controller(s). (PZ-61DR-E, PZ-60DR-E, PZ-52SF-E, PZ-43SMF-E)
*3 PLFY-EP can not connect more than 3 units
*4 Connectable outdoor units are PUMY-SP112/125/140V(Y)KMR2(-BS). TH only.

■ PUMY-P Series

Branch Box Connection Compatibility Table

Series	T	Model Name						Capacity					
Series	Type	Model Name	15	18	20	22	25	35	42	50	60	71	100
M series	Wall-Mounted	MSZ-LN•VG2					•						
		MSZ-AP•VG(K)	● *1		● *1		•	•	•	•			
		MSZ-FH•VE2					•						
		MSZ-EF•VG(K)				•	•	•	•	•			
		MSZ-SF•VA			•								
		MSZ-SF•VE3					•		•				
		MSZ-GF•VE2											
	Floor-Standing	MFZ-KT•VG					•						
	1-way Cassette	MLZ-KP•VF					•	•		•			
S series	Ceiling-Concealed	SEZ-M•DA(L)					•	•		•	•	•	
	2×2 Cassette	SLZ-M•FA					•	•		•			
P series	Ceiling-Suspended	PCA-M•KA						•		•	•	•	•
	4-way Cassette	PLA-M•EA						•		•	•	•	•
	Ceiling-Concealed	PEAD-M•JA(L)								•	•	•	•

^{*1} MSZ-AP15/20VGK are not connectable.

LEV Kit Connection Compatibility Table

							Сар	acity				
Series	I/U Type	Model Name	15	18	20	22	25	35	42	50	60	71
M series	Wall-Mounted	MSZ-LN•VG2					•			•		
		MSZ-AP•VG(K)	● *1		● *1		•			•		
		MSZ-FH•VE2					•			•		
		MSZ-EF•VG(K)				•	•					
		MSZ-SF•VA	•		•							
		MSZ-SF•VE3					•		•	•		
	Floor-Standing	MFZ-KT•VG					•			•		

^{*1} MSZ-AP15/20VGK are not connectable.

CITY MULTI Indoor Unit Compatibility Table for PUMY-P112/125/140

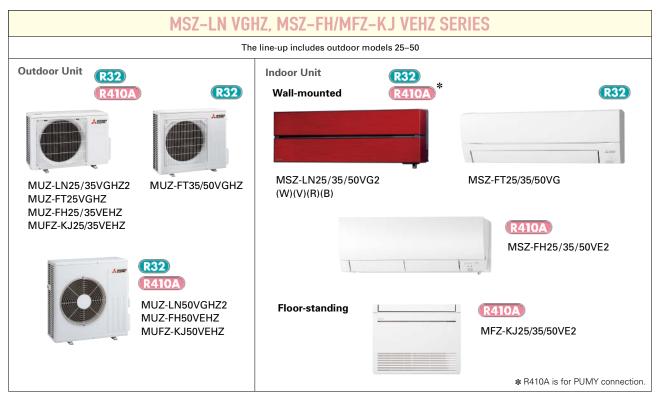
Series	Turno	Model Name							Cap	acity						
Series	Туре	woder name	P10	P15	P20	P25	P32	P40	P50	P63	P71	P80	P100	P125	P140	P200
CITY	1-way cassette	PMFY-P•VBM-E			•	•	•	•								
MULTI series	2-way cassette	PLFY-P•VLMD-E					•									
361163	4-way cassette	PLFY-M•VEM-E			•	•	•	•					•			
		PLFY-EP•VEM-E *4														
		PLFY-P•VFM-E		•	•	•	•	•								
	Ceiling-concealed	PEFY-P•VMR-E-L/R					•									
		PEFY-P•VMS1(L)-E						•								
		PEFY-M•VMA(L)-A			•	•	•	•	•	•			•		•	
		PEFY-P•VMA3-E *1					•									
		PEFY-P•VMHS-E						•	•		•		•	•	•	
		PEFY-P•VMHS-E-F														
	Ceiling-suspended	PCFY-P•VKM-E						•					•	•		
	Wall-mounted	PKFY-P•VLM-E		•			•									
		PKFY-P•VKM-E											•			
	Floor-standing	PFFY-P•VKM-E2					•									
		PFFY-P•VLEM-E			•		•	•								
		PFFY-P•VCM-E			•	•	•	•	•							
	ATW	PWFY-P•VM-E1 *2											•			
	Lossnay								GUF-50/1	00RD(H)4						

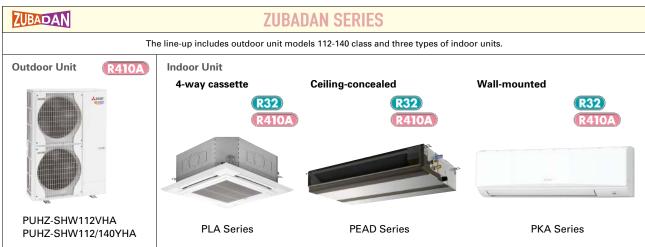
CITY MULTI Indoor Unit Compatibility Table for PUMY-P200

Series	Typo	Model Name							Сар	acity						
Series	Type 1-way cassette	woder name	P10	P15	P20	P25	P32	P40	P50	P63	P71	P80	P100	P125	P140	P200
CITY	2-way cassette	PMFY-P•VBM-E			•	•	•	•								
MULTI series	4-way cassette	PLFY-P•VLMD-E			•	•	•		•			•				
Series		PLFY-M•VEM-E			•	•	•		•	•		•	•	•		
		PLFY-EP•VEM-E *4														
	Ceiling-concealed	PLFY-P•VFM-E				•	•									
		PEFY-P•VMR-E-L/R					•									
		PEFY-P•VMS1(L)-E					•									
		PEFY-M•VMA(L)-A				•	•		•	•	•		•	•	•	
		PEFY-P•VMA3-E *1														
		PEFY-P•VMHS-E							•	•	•		•	•	•	•
		PEFY-P•VMHS-E-F														•
	Ceiling-suspended	PCFY-P•VKM-E						•		•			•	•		
	Wall-mounted	PKFY-P•VLM-E														
		PKFY-P•VKM-E											•			
	Floor-standing	PFFY-P•VKM-E2			•	•	•	•								
		PFFY-P•VLEM-E					•	•								
		PFFY-P•VCM-E				•	•		•	•						
	Lossnay								GUF-50/1	00RD(H)4						

¹ Authorized connectable indoor units are as follows;
PUMY-P112:PEFY-P25x2+P32x2, PUMY-P125:PEFY-P32x4, PUMY-P140:PEFY-P32x3+P40x1, PUMY-P200YKM2:PEFY-P40x2+P63x2
2 Note that connection is not allowed inside EU countries.
PWFY can not connect to PUMY-P200YKM2.
3 Do not connect Losnay remote controller(s). (PZ-61DR-E, PZ-60DR-E, PZ-52SF-E, PZ-43SMF-E)
4 PUMY-P112/125/140: PLFY-EP can not connect more than 3 units
PUMY-P200: Authorized connectable indoor units are only as follows; PLFY-EP63VEM-Ex3.

POWERFUL HEATING



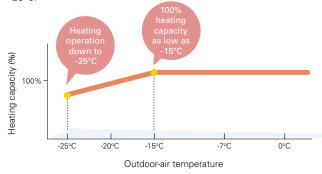


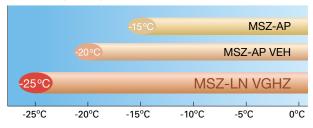
SELECTION

Choose the series that best matches the building layout.

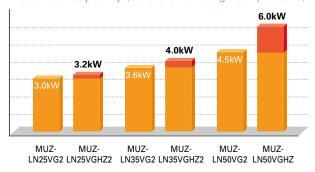
LIVE SERIES RATION SERIES

Unlike conventional air conditioning systems, the LN Series don't lose heating capacity when it's cold outside. Original technologies ensure excellent heating performance under extremely low outdoor temperatures and an impressive guaranteed operating range.

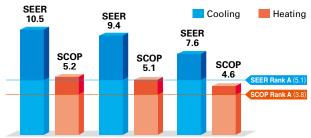



MSZ-LN25/35/50VG2(W)(V)(R)(B)

Unparalleled Heating Performance


LN Series outdoor units are equipped with a high-output compressor that provides enhanced heating performance under low outdoor temperatures. The heating operation range is extended down to $-25^{\circ}\mathrm{C}$

Operating Range


Declared Capacity (at reference design temperature)

High Energy Efficiency – Energy Rank of A⁺ or higher for All Models

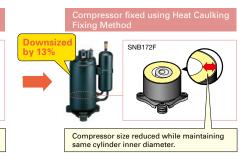
With indoor units that combine functionality, design and capacity and outdoor units equipped with a high-efficiency compressor, the MUZ-LN VGHZ simultaneously achieves high heating capacity and energy-saving performance.

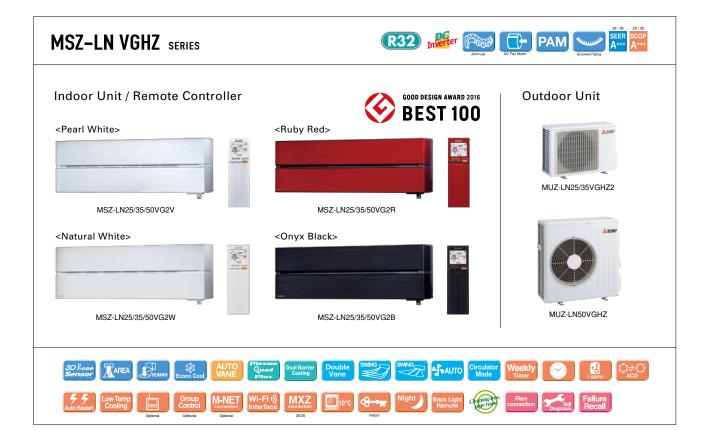
MUZ-LN25VGHZ2 MUZ-LN35VGHZ2 MUZ-LN50VGHZ

Freeze-prevention Heater Equipped as Standard

The Freeze-prevention heater restricts lowered capacity and operation shutdowns caused by the drain water freezing. This supports stable operation in low-temperature environments.

Operation Guaranteed at Outside Temperature of –25°C


Without Freeze-prevention heater


With Freeze-prevention heater

Compact, Powerful Compressor

A special manufacturing technology, "Heat Caulking Fixing Method," has been introduced to reduce compressor size while maintaining a high compressor output. This technology enables the installation of a powerful compressor in compact MUZ outdoor units. As a result, excellent heating performance is achieved when operating in cold outdoor environments.

Гуре						Inverter Heat Pump	
idoor Un	it				MSZ-LN25VG2(W)(V)(R)(B)	MSZ-LN35VG2(W)(V)(R)(B)	MSZ-LN50VG2(W)(V)(R)(B)
utdoor l	Jnit				MUZ-LN25VGHZ2	MUZ-LN35VGHZ2	MUZ-LN50VGHZ
frigerar	nt					R32 (*1)	
wer	Source					Outdoor Power supply	
pply	Funit ant Source Outdoor (V/Phase/H) Design Load Annual Electricity Co SEER (a-4) Capacity Total Input Design Load Back Up Heating Capanity Capacity Total Input Capacity Total Input Declared Capacity Total Input Capacity Total Input Total Input Operating Current (max) Input Operating Current (max) Input Operating Current (modi-Hi-SHi-1-3)(E Sound Level (SPL) Sound Level (SPL) Sound Level (SPL)	z)				230/Single/50	
oling	Design Load			kW	2.5	3.5	5.0
		nsumpti	on (*2)	kWh/a	83	130	230
	SEER (*4)				10.5	9.4	7.6
		Energy	Efficiency Class		A+++	A+++	A++
	Capacity	Rated		kW	2.5	3.5	5.0
		Min - Ma	3X	kW	0.8 - 3.5	0.8 - 4.0	1.4 - 5.8
	Total Input	Rated		kW	0.485	0.820	1.380
ating	Design Load			kW	3.2 (-10°C)	4.0 (-10°C)	6.0 (-10°C)
verage ason)(*5)	Declared Capacity	at refere	nce design temperature	kW	3.2 (-10°C)	4.0 (-10°C)	6.0 (-10°C)
13011)		at bivale	nt temperature	kW	3.2 (-10°C)	4.0 (-10°C)	6.0 (-10°C)
		at opera	tion limit temperature	kW	2.3 (-25°C)	3.1 (-25°C)	4.7 (-25°C)
				kW	0.0 (-10°C)	0.0 (-10°C)	0.0 (-10°C)
		nsumpti	on ^(*2)	kWh/a	861	1098	1826
	SCOP (*4)				5.2	5.1	4.6
		Energy	Efficiency Class		A+++	A+++	A++
	Capacity	Rated		kW	3.2	4.0	6.0
		Min - Ma	ax .	kW	0.8 - 6.3	0.9 - 6.6	1.8 - 8.7
	Total Input	Rated		kW	0.600	0.820	1.480
eratin	g Current (max)			Α	9.9	10.5	15.2
loor	Input		Rated	kW	0.027	0.027	0.034
it	Operating Current (r	nax)		А	0.3	0.3	0.4
	Dimensions		$H \times W \times D$	mm	307 - 890 - 233	307 - 890 - 233	307 - 890 - 233
				kg	15.5	15.5	15.5
			Cooling	m³/min	4.3 - 5.8 - 7.1 - 8.8 - 11.9	4.3 - 5.8 - 7.1 - 8.8 - 12.8	5.7 - 7.6 - 8.9 - 10.6 - 13.9
	1	Ory/Wet))	Heating	m³/min	4.0 - 5.7 - 7.1 - 8.5 - 14.4	4.3 - 5.7 - 7.1 - 8.5 - 13.7	5.4 - 6.4 - 8.5 - 10.7 - 15.7
		21.	Cooling	dB(A)	19 - 23 - 29 - 36 - 42	19 - 24 - 29 - 36 - 43	27 - 31 - 35 - 39 - 46
	-	")	Heating	dB(A)	19 - 24 - 29 - 36 - 45	19 - 24 - 29 - 36 - 45	25 - 29 - 34 - 39 - 47
	,			dB(A)	58	58	60
tdoor			$H \times W \times D$	mm	550 - 800 - 285	550 - 800 - 285	880 - 840 - 330
iit	- 5			kg	35	36	55
	Air Volume		Cooling	m³/min	31.4	33.8	48.8
			Heating	m³/min	27.4	27.4	51.3
	Sound Level (SPL)		Cooling	dB(A)	46	49	51
			Heating	dB(A)	49	50	54
			Cooling	dB(A)	60	61	64
		nax)		А	9.6	10.2	14.8
			T	Α	10	12	16
t.			Liquid / Gas	mm	6.35/9.52	6.35/9.52	6.35/9.52
ping	Max. Length		Out-In	m	20	20	30
	Max. Height		Out-In	m	12	12	15
	ed Operating Range		Cooling	°C	-10 ~ +46	-10 ~ +46	-10 ~ +46
Outdoorl			Heating	°C	-25 ~ +24	-25 ~ +24	-25 ~ +24

^(*1) Refrigerant leakage contributes to climate change, Refrigerant with lower global warming potential (GWP) would contribute is to global warming than a refrigerant with ligher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.

(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) SHI: Super High

(*4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(*5) Please see page 51-52 for heating (warmer season/colder season) specifications.

FT VGHZ SERIES

Unlike conventional air conditioning systems, the FT Series don't lose heating capacity when it's cold outside. Original technologies ensure excellent heating performance under extremely low outdoor temperatures and an impressive guaranteed operating range. Furthermore, the smaller and stylish indoor unit does not give you the limitation of installation location.

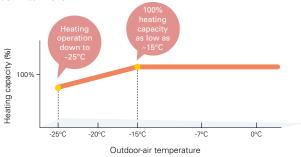
MSZ-FT25/35/50VG(K)

Compact Design

The FT series features its compact design with 280mm height and

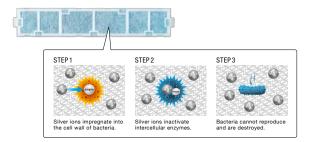
229mm depth, which is suitable for the installation above the door.

Built-in Wi-Fi


(MSZ-FT25/35/50VGK)

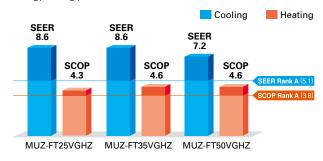
Powerful

Mitsubishi Electric Wi-Fi Control gives you the freedom to tailor your heating and cooling needs through computers, tablets, or smartphones from anywhere.


Hyper Heating

Mitsubishi Electric's powerful compressor and highly cold-resistant parts enable the heat pump to provide 100% or more heating capacity even at -15°C, and also the heating operation is guaranteed down to -25°C.

Silver-ionized Air Purifier Filter


The high performance filter is attached as standard. Captures the bacteria, pollen and other allergens in the air and neutralises them.

High Energy Efficiency - Energy Rank of A⁺ or higher for All Models

With indoor units that combine functionality, design and capacity and outdoor units equipped with a high-efficiency compressor, the MUZ-FT VGHZ simultaneously achieves high heating capacity and energy-saving performance.

(MSZ-FT25/35/50VG(K)-SC Scandinavian Model)

Remote Controller with Backlight

The remote controller screen is equipped with an LED backlight. The luminous screen allows you to check the setting easily even in the dark.

Circulator Mode

After reaching the target temperature, heating mode will automatically switch to Circulator mode, which makes the unit go into "fanonly" state and mixes warm air in the room.

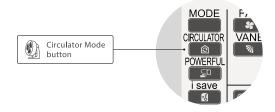


Image is for illustration purposes.

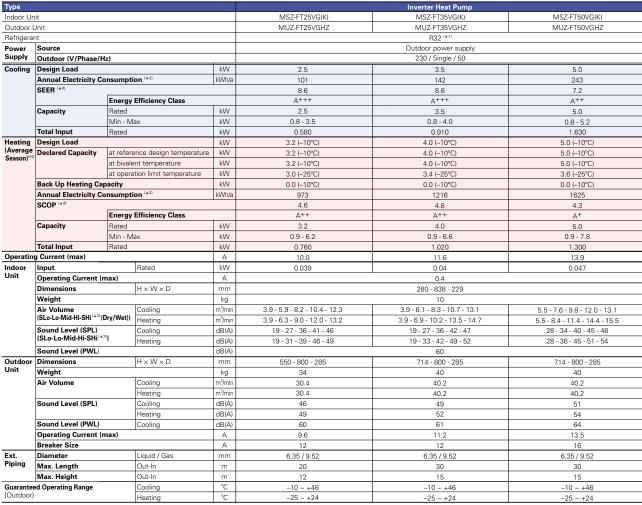
MSZ-FT SERIES

MSZ-FT25/35/50VG(K)

Outdoor Unit

MUZ-FT35/50VGHZ

Remote Controller



^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

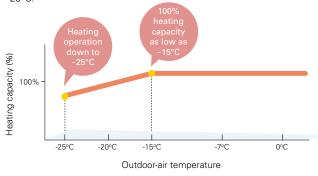
(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

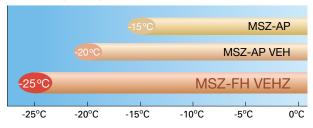
(*3) SHI: Super High

(*4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

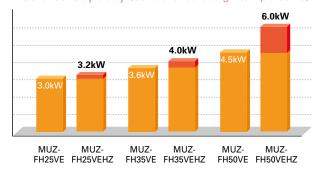
(*5) Please see page 51-52 for heating (warmer season) specifications.

EHVEHZ SERIES

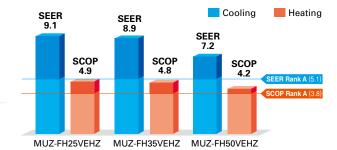

Unlike conventional air conditioning systems, the FH Series don't lose heating capacity when it's cold outside. Original technologies ensure excellent heating performance under extremely low outdoor temperatures and an impressive guaranteed operating range.



Unparalleled Heating Performance


FH Series outdoor units are equipped with a high-output compressor that provides enhanced heating performance under low outdoor temperatures. The heating operation range is extended down to -25°C

Operating Range


Declared Capacity (at reference design temperature)

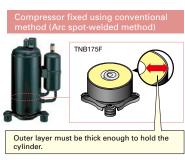
High Energy Efficiency – Energy Rank of A⁺ or higher for All Models

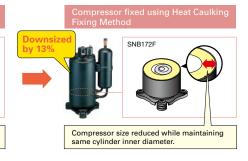
With indoor units that combine functionality, design and capacity and outdoor units equipped with a high-efficiency compressor, the MUZ-FH VEHZ simultaneously achieves high heating capacity and energy-saving performance.

Freeze-prevention Heater Equipped as Standard

The Freeze-prevention heater restricts lowered capacity and operation shutdowns caused by the drain water freezing. This supports stable operation in low-temperature environments.

Operation Guaranteed at Outside Temperature of -25°C



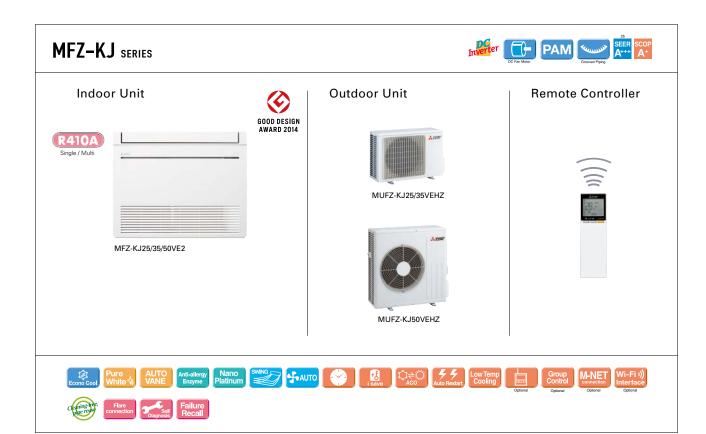

Without Freeze-prevention heater

With Freeze-prevention heater

Compact, Powerful Compressor

A special manufacturing technology, "Heat Caulking Fixing Method," has been introduced to reduce compressor size while maintaining a high compressor output. This technology enables the installation of a powerful compressor in compact MUZ outdoor units. As a result, excellent heating performance is achieved when operating in cold outdoor environments.

Inverter PAM SEER SEER ATT MSZ-FH VEHZ SERIES Indoor Unit **Outdoor Unit** Remote Controller **GOOD DESIGN AWARD 2012** MSZ-FH25/35/50VE2 MUZ-FH25/35VEHZ MUZ-FH50VEHZ


Гуре						Inverter Heat Pump	
idoor Ur	it				MSZ-FH25VE2	MSZ-FH35VE2	MSZ-FH50VE2
utdoor l	Jnit				MUZ-FH25VEHZ	MUZ-FH35VEHZ	MUZ-FH50VEHZ
efrigera	Unit nt Source Outdoor (V/Phase/Hz) Design Load Annual Electricity Consumption (*2) SEER (*4) Energy Efficiency Class Capacity Rated Min - Max Total Input Rated Declared Capacity at reference design temperat at bivalent temperature at operation limit temperature at operation limit temperature at operation limit temperature Back Up Heating Capacity Back Up Heating Capacity Energy Efficiency Class Capacity Rated Min - Max Total Input Rated Gurrent (max) Input Rated Operating Current (max) Dimensions H × W × D Weight Air Volume (SLo-Lo-Mid-Hi-SHi (*3)) Sound Level (SPL) (SLo-Lo-Mid-Hi-SHi (*3)) Sound Level (PWL)					R410A (*1)	
ower	Source					Outdoor power supply	
upply	Outdoor (V/Phase/H	lz)				230 / Single / 50	
ooling	Design Load			kW	2.5	3.5	5.0
	Annual Electricity Co	onsumpti	on (*2)	kWh/a	96	138	244
	SEER (*4)				9.1	8.9	7.2
		Energy	Efficiency Class		A+++	A+++	A++
	Capacity	Rated		kW	2.5	3.5	5.0
		Min - Ma	3X	kW	0.8 - 3.5	0.8 - 4.0	1.9 - 6.0
	Total Input	Rated		kW	0.485	0.820	1.380
eating	Design Load			kW	3.2	4.0	6.0
verage	Declared Capacity	at refere	nce design temperature	kW	3.2	4.0	6.0
eason)(*5)		at bivale	nt temperature	kW	3.2	4.0	6.0
		at opera	tion limit temperature	kW	1.7	2.6	3.8
	Back Up Heating Cap	pacity		kW	0.0	0.0	0.0
	Annual Electricity Co	onsumpti	on (*2)	kWh/a	924	1173	2006
					4.9	4.8	4.2
		Energy	Efficiency Class		A++	A++	A+
	Capacity	Rated		kW	3.2	4.0	6.0
L		Min - Ma	ЭX	kW	1.0 - 6.3	1.0 - 6.6	1.7 - 8.7
	Total Input	Rated		kW	0.580	0.800	1.480
peratin	g Current (max)			Α	9.6	10.5	14.0
door	Input		Rated	kW	0.029	0.029	0.031
nit	Operating Current (r	nax)		Α	0.4	0.4	0.4
	Dimensions		$H \times W \times D$	mm		305 (+17) - 925 - 234	
	Weight			kg	13.5	13.5	13.5
			Cooling	m³/min	3.9 - 4.7 - 6.3 - 8.6 - 11.6 (10.5)	3.9 - 4.7 - 6.3 - 8.6 - 11.6 (10.5)	6.4 - 7.4 - 8.6 - 10.1 - 12.4
	(SLo-Lo-Mid-Hi-SHi (*3) (I	Dry/Wet))	Heating	m³/min	4.0 - 4.7 - 6.4 - 9.2 - 13.2	4.0 - 4.7 - 6.4 - 9.2 - 13.2	5.7 - 7.2 - 9.0 - 11.2 - 14.6
			Cooling	dB(A)	20 - 23 - 29 - 36 - 42	21 - 24 - 29 - 36 - 42	27 - 31 - 35 - 39 - 44
	(SLo-Lo-Mid-Hi-SHi (*	3))	Heating	dB(A)	20 - 24 - 29 - 36 - 44	21 - 24 - 29 - 36 - 44	25 - 29 - 34 - 39 - 46
	Sound Level (PWL)			dB(A)	58	58	60
utdoor	Dimensions		$H \times W \times D$	mm	550 - 80	00 - 285	880 - 840 - 330
nit	Weight			kg	37	37	55
	Air Volume		Cooling	m³/min	31.3	33.6	48.8
			Heating	m³/min	31.3	33.6	51.3
	Sound Level (SPL)		Cooling	dB(A)	46	49	51
			Heating	dB(A)	49	50	54
	Sound Level (PWL)		Cooling	dB(A)	60	61	64
	Operating Current (r	nax)		Α	9.2	10.1	13.6
	Breaker Size			Α	10	12	16
ĸt.	Diameter		Liquid / Gas	mm	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7
iping	Max. Length		Out-In	m	20	20	30
	Max. Height		Out-In	m	12	12	15
	ed Operating Range		Cooling	°C	-10 ~ +46	-10 ~ +46	-10 ~ +46
Outdoor]			Heating	°C	-25 ~ +24	-25 ~ +24	-25 ~ +24

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute its or global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) Shi: Super High
(*4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

(*5) Please see page 51-52 for heating (warmer season) specifications.

Туре						Inverter Heat Pump	
Indoor Un	it				MFZ-KJ25VE2	MFZ-KJ35VE2	MFZ-KJ50VE2
Outdoor U					MUFZ-KJ25VEHZ	MUFZ-KJ35VEHZ	MUFZ-KJ50VEHZ
Refrigerar	nt					R410A (*1)	
Power	Source					Outdoor power supply	
Supply	Outdoor (V/Phase/H	z)				230 / Single / 50	
Cooling	Design Load			kW	2.5	3.5	5.0
	Annual Electricity Co	nsumpti	on (*2)	kWh/a	102	150	266
	SEER (*4)				8.5	8.1	6.5
		Energy	Efficiency Class		A+++	A++	A++
	Capacity	Rated		kW	2.5	3.5	5.0
		Min - Ma	ЭX	kW	0.5 - 3.4	0.5 - 3.7	1.6 - 5.7
	Total Input	Rated		kW	0.540	0.940	1.410
Heating	Design Load			kW	3.5	3.6	4.5
(Average	Declared Capacity	at refere	nce design temperature	kW	3.5	3.6	4.5
Season)		at bivale	nt temperature	kW	3.5	3.6	4.5
		at opera	tion limit temperature	kW	1.6	2.3	3.3
	Back Up Heating Cap	oacity		kW	0.0	0.0	0.0
	Annual Electricity Co	nsumpti	on ^(*2)	kWh/a	1104	1158	1467
	SCOP (*4)				4.4	4.3	4.2
		Energy	Efficiency Class		A+	A+	A+
	Capacity	Rated		kW	3.4	4.3	6.0
		Min - Ma	ЭX	kW	1.2 - 5.1	1.2 - 5.8	2.2 - 8.4
	Total Input	Rated		kW	0.770	1.100	1.610
Operatin	g Current (max)			Α	4.42	3.91	3.73
Indoor	Input		Rated	kW	0.016	0.016	0.038
Unit	Operating Current (n	nax)		Α	0.17	0.17	0.34
	Dimensions		$H \times W \times D$	mm		600 - 750 - 215	
	Weight			kg	15	15	15
	Air Volume		Cooling	m³/min	3.9 - 4.9 - 5.9 - 7.1 - 8.2	3.9 - 4.9 - 5.9 - 7.1 - 8.2	5.6 - 6.7 - 8.0 - 9.3 - 10.6
	(SLo-Lo-Mid-Hi-SHi (*3) ([Ory/Wet))	Heating	m³/min	3.9 - 5.1 - 6.2 - 7.7 - 9.7	3.9 - 5.1 - 6.2 - 7.7 - 9.7	6.0 - 7.4 - 9.4 - 11.6 - 14.0
	Sound Level (SPL)		Cooling	dB(A)	20 - 25 - 30 - 35 - 39	20 - 25 - 30 - 35 - 39	27 - 31 - 35 - 39 - 44
	(SLo-Lo-Mid-Hi-SHi (*3	")	Heating	dB(A)	19 - 25 - 30 - 35 - 41	19 - 25 - 30 - 35 - 41	29 - 35 - 40 - 45 - 50
	Sound Level (PWL)			dB(A)	49	50	56
Outdoor			$H \times W \times D$	mm	550 - 80		880 - 840 - 330
Unit	Weight			kg	37	37	55
	Air Volume		Cooling	m³/min	31.3	31.3	45.8
			Heating	m³/min	33.6	33.6	45.8
	Sound Level (SPL)		Cooling	dB(A)	46	47	49
			Heating	dB(A)	51	51	51
	Sound Level (PWL)		Cooling	dB(A)	59	60	63
	Operating Current (n	nax)		Α	9.2	10	13.6
	Breaker Size			Α	10	12	16
Ext.	Diameter		Liquid / Gas	mm	6.35 / 9.52	6.35 / 9.52	6.35 / 12.7
Piping	Max. Length		Out-In	m	20	20	30
	Max. Height		Out-In	m	12	12	15
	ed Operating Range		Cooling	°C	-10 ~ +46	-10 ~ +46	-10 ~ +46
[Outdoor]			Heating	°C	−25 ~ +24	-25 ~ +24	-25 ~ +24

^(*1) Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO2, over a pendio of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.

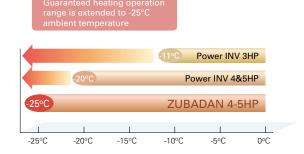
(*2) Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.

(*3) SHI: Super High

(*4) SEER, SCOP and other related description are based on COMMISSION DELEGATED REGULATION (EU) No.626/2011. The temperature conditions for calculating SCOP are based on "Average Season".

ZUBADAN SERIES

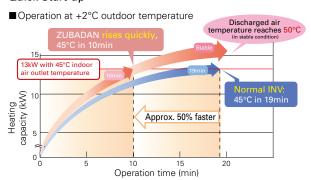
The ZUBADAN Series incorporates an original Flash Injection technology that improves the already high heating capacity of the system. This new member of the series line-up ensures comfortable heat pump-driven heating performance in cold regions.

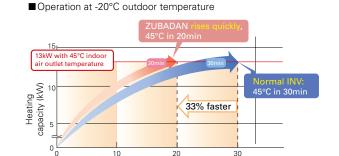


Units in photo are Japanese models.
European model specifications are different.

Improved Heating Performance

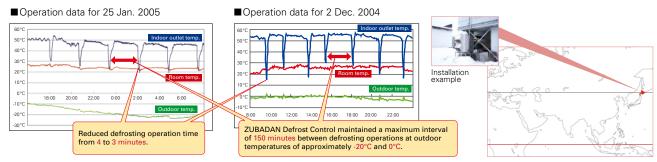
Mitsubishi Electric's unique "Flash Injection" circuit achieves remarkably high heating performance. This technology has resulted in an excellent heating capacity rating in outdoor temperatures as low as -15°C, and the guaranteed heating operation range of the heating mode has been extended to -25°C. Accordingly, the heat-pump units of the ZUBADAN Series are perfect for warming homes in the coldest of regions.





Enhanced Comfort

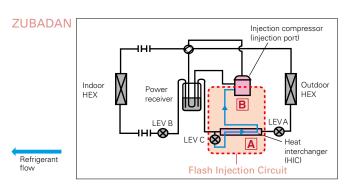
The Flash Injection circuit improves start-up and recover from the defrosting operation. A newly introduced defrost operation control also improves defrost frequency. These features enable the temperature to reach the set temperature more quickly, and contribute to maintaining it at the desired setting.

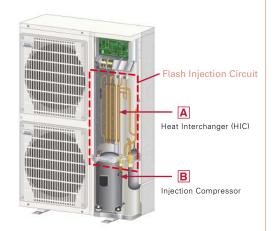

Quick Start-up

Operation time (min)

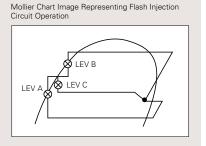
ZUBADAN Defrost Control and Faster Recovery from Defrost Operation Field Test Results: Office building in Asahikawa, Hokkaido, Japan

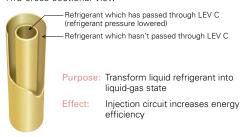
ErP Lot 10 Compliant with High Energy-efficiency Achieving SEER/SCOP Rank A and A+



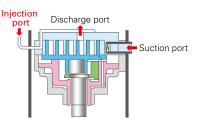

Powerful heating yet annually high energy efficiency in both cooling and heating, achieving rank A and A+.

Mitsubishi Electric's Flash Injection Technology The Key to High Heating Performance at Low Outdoor Temperatures


■Flash Injection Circuit


The ZUBADAN Series is equipped with Mitsubishi Electric's original Flash Injection Circuit, which is comprised of a bypass circuit and heat interchanger (HIC). The HIC transforms rerouted liquid refrigerant into a gas-liquid state to lower compression load. This process ensures excellent heating performance even when the outdoor temperature drops very low.

In traditional units, when the outdoor temperature is low, the volume of refrigerant circulating in the compressor decreases due to the drop in refrigerant pressure and the protection from overheating caused by high compression, thereby reducing heating capacity. The Flash Injection Circuit injects refrigerant to maintain the refrigerant circulation volume and compressor operation load, thereby maintaining heating capacity.


A Heat Interchanger (HIC)

HIC cross-sectional view

The compressor is subjected to a heavy load when compressing liquid refrigerant, and the result is lower operation efficiency. The addition of HIC supports refrigerant heat exchange at two different pressure levels. The heat-exchange process transforms the injected liquid refrigerant into a gas liquid state, thereby decreasing the load on the compressor during the compression process.

B Injection Compressor

Purpose: To increase the volume of refrigerant being circulated

Improves heating capacity at low outdoor temperatures, and enables higher indoor-air outlet temperature adjustment and higher defrost operation speed

Refrigerant passes from the HIC into the compressor through the injection port. Having two refrigerant inlets makes it possible to raise the volume of refrigerant being circulated when the outdoor temperature is low and at the start of heating operation.

PLZ-SHW SERIES Indoor Unit **R32** R410A PLA-ZM100/125EA **Panel**

Panel	With Signal Receiver	With 3D i-see Sensor	With Wireless Remote Controller	With Auto Elevation
PLP-6EA				
PLP-6EAL	✓			
PLP-6EAE		√		
PLP-6EALE	✓	✓		
PLP-6EAJ	✓			✓
PLP-6EAJE	✓	✓		✓
PLP-6EALM	✓		✓	
PLP-6EALME	✓	✓	✓	

(R410A)

Outdoor Unit

PUHZ-SHW112VHA(-BS) PUHZ-SHW112/140YHA(-BS)

Enclosed in PLP-6EALME

i-see Sensor	
Optional	

уре					Inverter Heat Pump	
ndoor Uni					M100EA	PLA-ZM125EA
Outdoor U				PUHZ-SHW112VHA	PUHZ-SHW112YHA	PUHZ-SHW140YHA
efrigeran					R410A*1	
	Source				Outdoor power supply	
	Outdoor (V/Phase/H			230 / 1 / 50	400 / 3 / 50	400 / 3 / 50
ooling	Capacity	Rated	kW	10.0	10.0	12.5
		Min - Max	kW	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0
	Total Input	Rated	kW	2.857	2.857	5.000
	EER			-	-	2.50
	EEL Rank			_	-	-
	Design Load		kW	10.0	10.0	-
	Annual Electricity Co	onsumption*2	kWh/a	633	633	-
	SEER*4			5.5	5.5	-
		Energy Efficiency Class		А	A	-
	Capacity	Rated	kW	11.2	11.2	14.0
verage		Min - Max	kW	4.5 - 14.0	4.5 - 14.0	5.0 - 16.0
eason)	Total Input	Rated	kW	2.667	2.667	4.000
	COP			-	-	3.50
		EEL Rank		-	-	-
	Design Load	•	kW	12.7	12.7	_
	Declared Capacity	at reference design temperature	kW	11.2 (-10°C)	11.2 (-10°C)	_
		at bivalent temperature	kW	11.2 (-7°C)	11.2 (-7°C)	_
		at operation limit temperature	kW	9.3 (-25°C)	9.3 (-25°C)	-
	Back Up Heating Capacity kW		kW	1.5	1.5	_
	Annual Electricity Consumption*2 kWh/a		4420	4420	_	
	SCOP*4			4.0	4.0	-
	Energy Efficiency Class			Α+	A+	-
erating	Current (max)		Α	35.5	13.5	13.5
loor	Input	Rated	kW	0.07	0.07	0.08
it	Operating Current (max)		Α	0.47	0.47	0.52
	Dimensions <panel> H × W × D</panel>		mm		298-840-840 <40-950-950>	
	Weight <panel></panel>	1	kg	26 <5>	26 <5>	26 <5>
	Air Volume [Lo-Mi2-Mi1-Hi]		m³/min	19 - 22 - 25 - 28	19 - 22 - 25 - 28	21 - 24 - 26 - 29
	Sound Level (SPL) [L	o-Mi2-Mi1-Hi]	dB(A)	31 - 34 - 37 - 40	31 - 34 - 37 - 40	33 - 36 - 39 - 41
	Sound Level (PWL)		dB(A)	61	61	62
tdoor	Dimensions	$H \times W \times D$	mm		1350 - 950 - 330 (+30)	
it	Weight	'	kg	120	134	134
	Air Volume	Cooling	m³/min	100	100	100
		Heating	m³/min	100	100	100
	Sound Level (SPL)	Cooling	dB(A)	51	51	51
		Heating	dB(A)	52	52	52
	Sound Level (PWL)	Cooling	dB(A)	69	69	69
	Operating Current (n		Α	35	13	13
	Breaker Size	-	Α	40	16	16
	Diameter	Liquid / Gas	mm	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
	Max. Length	Out-In	m	75	75	75
	Max. Height	Out-In	m	30	30	30
	d Operating Range	Cooling*3	°C	-15 ~ +46	-15 ~ +46	-15 ~ +46
Outdoor]		Heating	°C	-25 ~ +21	-25 ~ +21	-25 ~ +21

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.
*2 Energy consumption based on standard test results. Actual energy consumption based on standard test results.
*3 Optional air protection guide is required where ambient temperature is lower than –5°C.
*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

PLZ-SHW SERIES

Panel

PLA-M100/125EA

Panel	With Signal Receiver	With 3D i-see Sensor	With Wireless Remote Controller	With Auto Elevation
PLP-6EA				
PLP-6EAL	✓			
PLP-6EAE		~		
PLP-6EALE	✓	~		
PLP-6EAJ	✓			✓
PLP-6EAJE	✓	>		✓
PLP-6EALM	✓		✓	
PLP-6EALME	1	1	√	

Outdoor Unit

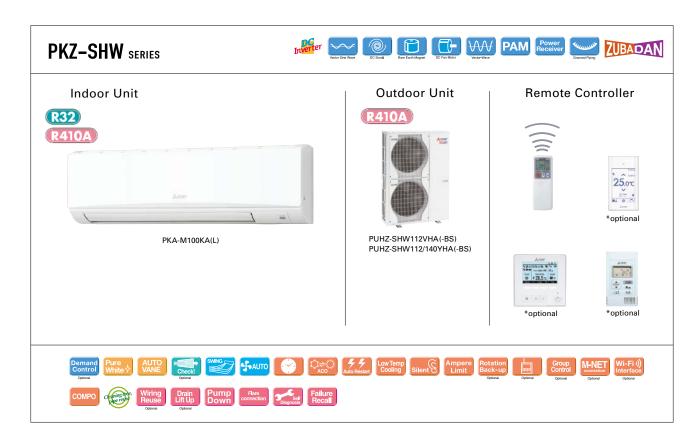
(R410A)

PUHZ-SHW112VHA(-BS) PUHZ-SHW112/140YHA(-BS)

Remote Controller

*optional

*optional


ре					Inverter Heat Pump	
ndoor Ur	it			PLA-M	100EA	PLA-M125EA
Outdoor I	Jnit			PUHZ-SHW112VHA	PUHZ-SHW112YHA	PUHZ-SHW140YHA
Refrigera	nt				R410A*1	
ower	Source				Outdoor power supply	
Supply	Outdoor (V/Phase/Hz)			230 / 1 / 50	400 / 3 / 50	400 / 3 / 50
Cooling	Capacity	Rated	kW	10.0	10.0	12.5
		Min - Max	kW	4.9 - 11.4	4.9 - 11.4	5.5 - 14.0
	Total Input	Rated	kW	2.940	2.940	5.000
	EER			-	-	2.50
		EEL Rank		-	-	-
	Design Load		kW	10.0	10.0	_
	Annual Electricity Co	onsumption*2	kWh/a	661	661	_
	SEER*4			5.3	5.3	_
		Energy Efficiency Class		A	A	_
leating	Capacity	Rated	kW	11.2	11.2	14.0
Average		Min - Max	kW	4.5 - 14.0	4.5 - 14.0	5.0 - 16.0
Season)	Total Input	Rated	kW	2.793	2.793	4.000
	COP	-		-	-	3.50
		EEL Rank		_	-	
	Design Load		kW	12.7	12.7	_
	Declared Capacity	at reference design temperature	kW	11.2 (-10°C)	11.2 (-10°C)	_
		at bivalent temperature	kW	11.2 (-7°C)	11.2 (-7°C)	_
		at operation limit temperature	kW	9.3 (-25°C)	9.3 (-25°C)	
	Back Up Heating Cap		kW	1.5	1.5	_
			kWh/a	4445	4445	_
	SCOP*4 Energy Efficiency Class		KVVIIJU	4.0	4.0	
				A+	A+	
neratin	g Current (max)	Energy Emolency Glass	Α	35.5	13.5	13.7
ndoor	Input	Rated	kW	0.07	0.07	0.08
Jnit	Operating Current (r	-	A	0.46	0.46	0.66
	Dimensions <panel></panel>		mm	298-840-840 <40-950-950>		
	Weight <panel></panel>	I I V VV X D	kg	24 <5>	24 <5>	26 <5>
	Air Volume [Lo-Mi2-N	Ai1-Hil	m³/min	19 - 23 - 26 - 29	24 <5> 19 - 23 - 26 - 29	21 - 25 - 28 - 31
	Sound Level (SPL) [L		dB(A)	31 - 34 - 37 - 40	31 - 34 - 37 - 40	33 - 37 - 41 - 44
	Sound Level (PWL)		dB(A)	61	61	65
Outdoor	Dimensions	$H \times W \times D$	mm	UI	1350 - 950 - 330 (+30)	ບວ
Jutaoor Jnit	Weight	I I V VV X D	kg	120	1350 - 950 - 330 (+30)	134
-	Air Volume	Cooling	m³/min	100	100	134
	All volume	Heating	m ³ /min	100	100	100
	Sound Level (SPL)	<u> </u>	dB(A)	51	51	51
	Sound Level (SPL)	Cooling	dB(A)	52	51	52
	Cound Lavel (D'4")	Heating		-	-	
	Sound Level (PWL)	Cooling	dB(A)	69	69	69
	Operating Current (max)			35	13	13
	Breaker Size	In the	Α	40	16	16
xt. Piping	Diameter	Liquid / Gas	mm	9.52 / 15.88	9.52 / 15.88	9.52 / 15.88
iping	Max. Length	Out-In	m	75	75	75
	Max. Height	Out-In	m	30	30	30
Juaranto	ed Operating Range	Cooling*3	°C	−15 ~ +46	−15 ~ +46	-15 ~ +46

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.
*2 Energy consumption based on standard test results. Actual energy consumption based on standard test results.
*3 Optional air protection guide is required where ambient temperature is lower than –5°C.
*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

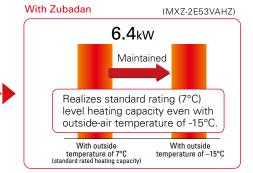
Гуре				Inverter He			
ndoor Un				PEAD-M1			
outdoor l				PUHZ-SHW112VHA(-BS)	PUHZ-SHW112YHA(-BS)		
	efrigerant			R410A*1			
ower	Source			Outdoor power supply			
upply	Outdoor (V/Phase/H	-		VHA:230 / Single / 50,			
cooling	Capacity	Rated	kW	10.0	10.0		
		Min - Max	kW	4.9 - 11.4	4.9 - 11.4		
	Total Input	Rated	kW	2.924 (2.904)	2.924 (2.904)		
	EER			-			
		EEL Rank		-			
	Design Load		kW	10.0	10.0		
	Annual Electricity Co	onsumption*2	kWh/a	729 (714)	729 (714)		
	SEER*4			4.8 (4.9)	4.8 (4.9)		
		Energy Efficiency Class		В	В		
eating	Capacity	Rated	kW	11.2	11.2		
(Average Season)		Min - Max	kW	4.5 - 14.0	4.5 - 14.0		
043011)	Total Input	Rated	kW	3.103	3.103		
	COP			-			
		EEL Rank		-			
	Design Load		kW	12.7	12.7		
	Declared Capacity	at reference design temperature	kW	11.2	11.2		
		at bivalent temperature	kW	11.2	11.2		
		at operation limit temperature	kW	9.4	9.4		
	Back Up Heating Capacity		kW	1.5	1.5		
			kWh/a	4664	4664		
	SCOP*4			3.8	3.8		
	Energy Efficiency Class			A	A		
peratin	g Current (max)		Α	37.7	15.7		
door	Input [Cooling / Heating	ng] Rated	kW	0.25 (0.23) / 0.23	0.25 (0.23) / 0.23		
nit	Operating Current (max)		Α	2.65	2.65		
	Dimensions	$H \times W \times D$	mm	250 - 1400 - 732	250 - 1400 - 732		
	Weight	·	kg	41 (40)	41 (40)		
	Air Volume [Lo-Mid-H	Hi]	m³/min	24.0 - 29.0 - 34.0	24.0 - 29.0 - 34.0		
	External Static Press	sure	Pa	35 / 50 / 70 / 100 / 150	35 / 50 / 70 / 100 / 150		
	Sound Level (SPL) [L	o-Mid-Hi]	dB(A)	29 - 34 - 38	29 - 34 - 38		
	Sound Level (PWL)		dB(A)	61	61		
	Dimensions	H × W × D	mm	1350 - 950 - 330 (+30)	1350 - 950 - 330 (+30)		
nit	Weight		kg	120	134		
	Air Volume	Cooling	m³/min	100.0	100.0		
		Heating	m³/min	100.0	100.0		
	Sound Level (SPL)	Cooling	dB(A)	51	51		
		Heating	dB(A)	52	52		
	Sound Level (PWL)	Cooling	dB(A)	69	69		
	Operating Current (n	nax)	Α	35.0	13.0		
	Breaker Size		Α	40	16		
ĸt.	Diameter	Liquid / Gas	mm	9.52 / 15.88	9.52 / 15.88		
iping	Max. Length	Out-In	m	75	75		
	Max. Height	Out-In	m	30	30		
iuarante	ed Operating Range	Cooling*3	°C	-15 ~ +46	-15 ~ +46		
Outdoor]		Heating	°C	-25 ~ +21	-25 ~ +21		

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.
*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.
*3 Optional air protection guide is required where ambient temperature is lower than -5°C.
*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

Туре				Inverter Heat Pump		
ndoor Un	it			PKA-M1	00KA(L)	
Outdoor l	Jnit			PUHZ-SHW112VHA(-BS)	PUHZ-SHW112YHA(-BS)	
Refrigerant				R410A*1		
ower	Source			Outdoor power supply		
Supply	Outdoor (V/Phase/H	lz)		VHA:230 / Single / 50,	YHA:400 / Three / 50	
Cooling	Capacity	Rated	kW	10.0	10.0	
_		Min - Max	kW	4.9 - 11.4	4.9 - 11.4	
	Total Input	Rated	kW	2.924	2.924	
	Design Load		kW	10.0	10.0	
	Annual Electricity Co	onsumption*2	kWh/a	673	673	
	SEER*4			5.2	5.2	
		Energy Efficiency Class		A	A	
leating	Capacity	Rated	kW	11.2	11.2	
Average		Min - Max	kW	4.5 - 14.0	4.5 - 14.0	
	Total Input	Rated	kW	3.103	3.103	
	Design Load	1.000	kW	12.7	12.7	
	Declared Capacity	at reference design temperature	kW	11.2	11.2	
	Deciared Capacity	at bivalent temperature	kW	11.2	11.2	
		at operation limit temperature	kW	9.4	9.4	
	1.		kW	1.5	1.5	
	Annual Electricity Consumption*2 kWh/a					
	SCOP*4		KVVII/a	4664	4664	
	SCOP	Energy Efficiency Class		3.8	3.8	
	0	Energy Emiciency Class		A	A	
	g Current (max)	n : 1	Α	35.6	13.6	
idoor nit	Input	Rated	kW	0.08	0.08	
	Operating Current (max)		Α	0.57 0.57		
			mm	365 - 11		
	Weight <panel></panel>		kg	21	21	
	Air Volume [Lo-Mid-Hi]		m³/min	20 - 23 - 26	20 - 23 - 26	
	Sound Level (SPL) [L	.o-Mid-Hi]	dB(A)	41 - 45 - 49	41 - 45 - 49	
	Sound Level (PWL)		dB(A)	65	65	
utdoor	Dimensions	H × W × D	mm	1350 - 950 - 330 (+30)		
Jnit	Weight		kg	120	134	
	Air Volume	Cooling	m³/min	100.0	100.0	
		Heating	m³/min	100.0	100.0	
	Sound Level (SPL)	Cooling	dB(A)	51	51	
		Heating	dB(A)	52	52	
	Sound Level (PWL)	Cooling	dB(A)	69	69	
	Operating Current (n	nax)	Α	35.0	13.0	
	Breaker Size		Α	40	16	
xt.	Diameter	Liquid / Gas	mm	9.52 / 15.88	9.52 / 15.88	
iping	Max. Length	Out-In	m	75	75	
	Max. Height	Out-In	m	30	30	
Guarante	ed Operating Range	Cooling*3	°C	-15 ~ +46	-15 ~ +46	
Outdoor]	Heating		°C	-25 ~ +21	-25 ~ +21	

^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.
*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.
*3 Optional air protection guide is required where ambient temperature is lower than -5°C.
*4 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

MXZ-VAHZ SERIES


New hyper-heating MXZ allows you to create an oasis of comfort throughout your home and office in the rooms you use most, any time of the year.

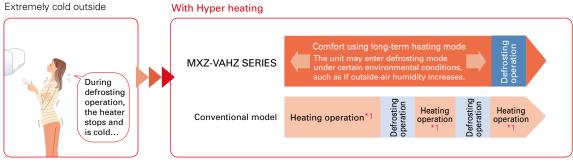
Standard rated heating capacity is maintained even when the outside-air temperature drops to -15°C.

Maintains high capacity output even when outside-air temperature is low.

(MXZ-2D53VA2) **6.4**kW Our conventional model was not able to maintain standard Falls 3.0kW rated heating capacity, making it hard to provide Capacity decreased due to warming in case of low outdoor-air temperature low outside-air temperatures. With outside temperature of –15°C With outside temperature of 7°C (standard rated heating capacity)

Can operate at outside-air temperature of -25°C

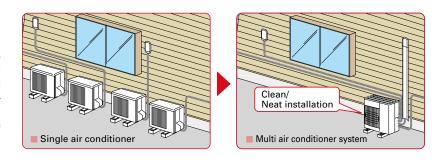
- 1. Incorporated key parts resistant to cold of up to -25°C after rigorous selection.
- 2. Printed circuit board-core of the air conditioner—is coated on both sides to protect it in harsh environments.

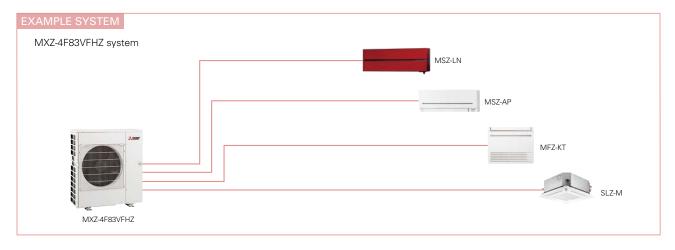

Freeze-prevention heater standard equipment

Prevents capacity loss and operation from stopping due to drain water freezing.

Continuous heating for long periods

Wasteful defrosting operation suppressed to enable more comfortable long-term continuous heating.




^{*1:} Conventional model performs continuous heating approximately 30min up to a maximum of 90min.

One outdoor unit supports multiple indoor units.

With MXZ-VAHZ, one outdoor unit can cool and heat up to six rooms. They can be installed neatly in sites with limited space such as condominium balconies.

*Please note that cooling and heating modes cannot be run simultaneously in different rooms.

Freedom of combinations in cold region greatly enhanced

The variety of indoor unit connection options in cold regions, restricted until now, has been greatly increased. Increased design freedom.

 $\verb§+1: P series cannot be connect with MXZ-4E83VAHZ when ampere limit adjustment function is operated.$

MXZ-VAHZ SERIES

R32

MXZ-4F83VFHZ

MXZ-2F53VFHZ

MXZ-4E83VAHZ

-10 ~ +46

-10 ~ +46

MXZ-2E53VAHZ

Туре					Inverter H	eat Pump		
Indoor Un	it			Please refer to *4 *5				
Outdoor U				MXZ-2F53VFHZ	MXZ-4F83VFHZ	MXZ-2E53VAHZ	MXZ-4E83VAHZ	
Refrigerar					2*6		10A*1	
ower	wer Source			Outdoor power supply				
				220 - 230 - 240V / Single / 50				
ooling	Capacity	Rated	kW	5.3	8.3	5.3	8.3	
		Min - Max	kW	1.1 - 6.0	3.5 - 9.2	1.1 - 6.0	3.5 - 9.2	
	Total Input	Rated	kW	1.29	1.90	1.29	2.25	
	Design Load	•	kW	5.3	8.3	5.3	8.3	
	Annual Electricity Co	onsumption*2	kWh/a	274	398	282	447	
	SEER*4,*7	•		6.8	7.3	6.5	6.5	
		Energy Efficiency Class*4		A++	A++	A++	A++	
eating	Capacity	Rated (7°C)	kW	6.4	9.0	6.4	9.0	
verage		Rated (-7°C)	kW	6.4	9.0	6.4	9.0	
eason)		Rated (-15°C)	kW	6.4	9.0	6.4	9.0	
		Min - Max	kW	1.0 - 7.0	3.5 - 11.6	1.0 - 7.0	3.5 - 11.6	
	Total Input	Rated	kW	1.36	1.70	1.36	1.90	
	Design Load			6.4	10.1	6.4	10.1	
		at reference design temperature	kW	6.9	10.6	6.4	9.0	
		at bivalent temperature	kW	7.4	11.5	6.4	9.0	
		at operation limit temperature	kW	4.1	5.7	2.4	2.5	
	Back Up Heating Capacity		kW	0.0	0.0	0.0	1.1	
	Annual Electricity Co	Annual Electricity Consumption*2		2172	3286	2165	3446	
	SCOP*7			4.1	4.3	4.1	4.1	
		Energy Efficiency Class*4		A+	A+	A+	A+	
ах. Оре	erating Current (Indoo	or+Outdoor)	Α	15.6	28.0	15.6	28.0	
utdoor	Dimensions	$H \times W \times D$	mm	796 × 950 × 330	1048 × 950 × 330	796 × 950 × 330	1048 × 950 × 330	
nit	Weight	•	kg	61	86	61	87	
	Air Volume	Cooling	m³/min	43	63	47.0	63.0	
		Heating	m³/min	41	77	47.0	77.0	
	Sound Level (SPL)	Cooling	dB(A)	45	55	45	53	
		Heating	dB(A)	47	57	47	57	
	Sound Level (PWL)	Cooling	dB(A)	55	66	55	66	
	Breaker Size		Α	16	30	16	30	
rt.	Diameter	Liquid / Gas	mm	6.35 × 2 / 9.52 × 2	6.35×4/12.7×1+9.52×3	6.35 × 2 / 9.52 × 2	6.35×4/12.7×1+9.52×	
ping	Total Piping Length	(max)	m	30	70	30	70	
	Each Indoor Unit Pip	ing Length (max)	m	20	25	20	25	
	Max. Height		m	15	15	15 (10) * ³	15 (10) *3	
	Chargeless Length		m	30	70	20	25	
							+	

 $-10 \sim +46$

-25 ~ +24

-10 ~ +46

-25 ~ +24

Guaranteed Operating Range

Cooling

Heating

^{##} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 2088. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 2088 times higher than 1 kg of COz, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

*2 Energy consumption based on standard test results.
Actual energy consumption will depend on how the appliance is used and where it is located.

*3 If the outdoor unit is installed higher than the indoor unit, max. height is reduced to 10m.

*4 EER/COP, EEL rank, SEER/SCOP values and energy efficiency class are measured when connected to the indoor units listed below.

MX2-2F53VFHZ MSZ-LN18WG2 + MSZ-LN3SVG2
MX2-4F83VFHZ MSZ-LN18WG2 + MSZ-LN25VG2 + MSZ-LN25VG2
MX2-2E53VAHZ MSZ-EF18VE + MSZ-EF18VE + MSZ-EF2VE + MSZ-EF2VE

*5 Indoor unit compatibility table is shown on page 115-116.

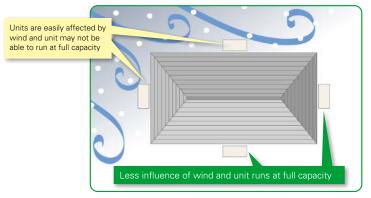
*6 Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of COz, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

*7 SEER and SCOP are based on 2009/125/EC:Energy-related Products Directive and Regulation(EU) No206/2012.

To ensure full capacity in cold and snowy regions...

3 Important Points to Remember When Installing the Outdoor Unit

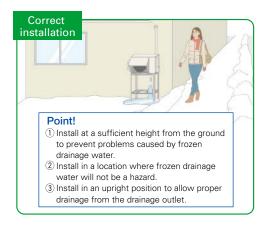
* RAC/PAC (inc. Air to Water) /MXZ


Wind and snow can significantly reduce capacity.

Be sure to check the infomation below and install the outdoor unit correctly.

Installation Location

Be aware of the prevailing wind direction in winter and install the outdoor unit where it is as sheltered as possible.

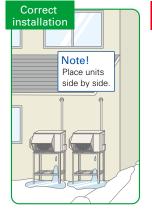


2

Measures for Drainage of Water

Case 1: Unit is installed close to passage (walkway)

Do not install the unit close to passage as drainage water from the unit may freeze and cause a slipping hazard.



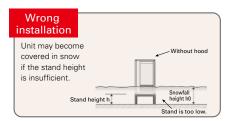
Case 2: Multiple units are installed

Do not install units on top of one another as it may cause frozen drainage water on the bottom unit

Unit is installed on the ground

To avoid the adverse effects of snow and frozen drainage water, install the unit on a stand to ensure a sufficient height from the ground.

[RAC/PAC/MXZ]


- 1) Install at a position/height to prevent the unit being buried in snow *1 and the adverse effects of frozen
- 2 Install so as to avoid the effects of snow or snowdrift.
- 3 Install so as to avoid the damage from falling snow or icicles.
 - ** Illistand a neight above the nightest shorthan arguments **2 Even for correct installations, dripping drainage water may form an icicle which needs to be cleared away regularly to prevent a blocked drainage outlet.

Use a stand to add sufficient height to protect the unit heat exchanger from snow and prevent icicles forming during defrost operation.

Correct installation Minimum height (h) Air intake ~ snow hood (side panel) should be higher than the highest snowfall depth (h0) +20cm h0

Install snow protection hood as necessary

[RAC/PAC/MXZ]

Necessity of accessories (drain socket & centralised drain pan, stand, snow protection hood, base heater)

	Snowy region	Cold region			
	Countermeasures for snow	Countermeasures for freezing	Remarks		
Drain socket, Centralised drain pan	Not used	Not used	Prevents freezing		
Stand	Needed	Needed	[RAC/PAC/MXZ] 1. Install so as to prevent the unit being buried in snow (at a height greater than the highest snowfall depth). Be sure that the stand does not obstruct drainage. 2. Install so as to prevent damage to the unit due to frozen drainage water (icicles).		
Snow protection hood	Needed *When the installation position is subject to snowfall.	_	Prevents heat exchanger from being covered in snow. Prevents snow accumulating inside the air duct.		
Base heater	_	Needed	[RAC/PAC/MXZ] Outdoor units equipped with a heater for cold regions are those with an "H" in the model name. For the cold-climate zone, use of a unit with a heater is strongly recommended. Even for the moderate-climate zone use of a unit with a heater is recommended for regions subject to high humidity in winter.		

⚠ CAUTION

About disposal of drainage water

When the unit is installed in cold or snowy regions:

Drainage water may freeze in the drain socket/hose and prevent the fan from rotating.

Do not attach a drain socket packaged as an accessory to the unit.

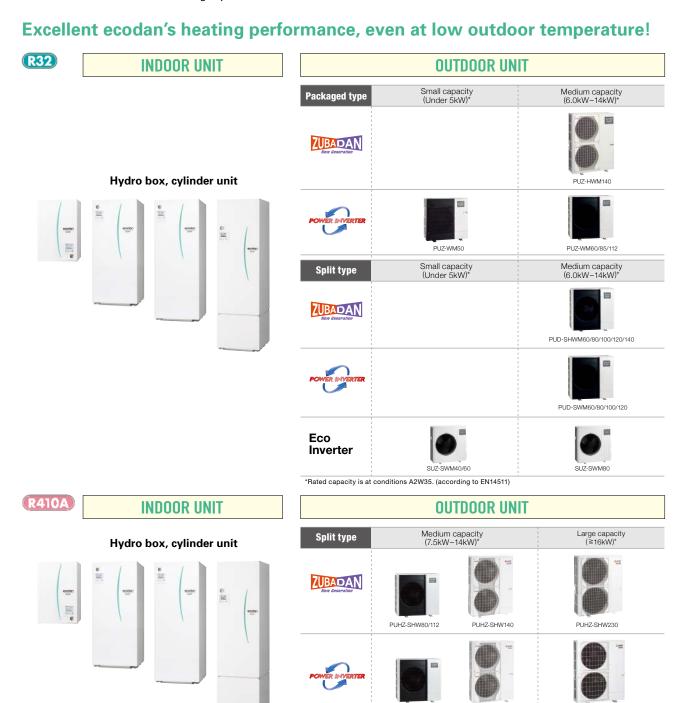
* In the case that fitting a drain socket is absolutely necessary, steps must be taken so that the drainage water does not freeze For more information, please consult Mitsubishi Electric or one of its dealers/resellers.

Arrangement for
snow protection hood

[RAC/PAC/MXZ]

Separately sold parts are available for some models.

Please consult Mitsubishi Electric or one of its dealers/resellers at the time of purchase for details.



SELECTION Choose the series that best matches the building layout.

	*Rated capa	acity is at conditions A2W35. (according to EN145	511)
Other ATW-related system	Mr.SLIM+	PUMY + ecodan	ecodan geodan
	R410A	R410A	R32
	PUHZ-FRP71	PUMY-P112/125/140	EHGT17D-YM9ED

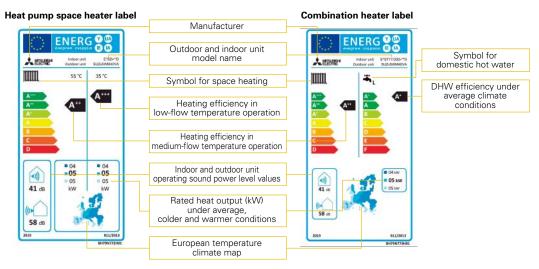
PUH7-SW75/100

PLIH7-SW120

PUH7-SW160/200

New Eco-design Directive

What is the ErP Directive?


The Eco-design Directive for Energy-related Products (ErP Directive) established a framework to set mandatory standards for ErPs sold in the European Union (EU). The ErP Directive introduces new energy efficiency ratings across various product categories. It affects how products such as computers, vacuum cleaners, boilers and even windows are classified in terms of environmental performance. Labelling regulations that apply to our ATW heat pumps came into effect from September 26, 2015, and then revised from September 26, 2019.

New energy label and measurements

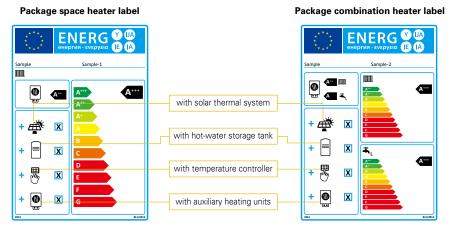
Under directive 2009/125/EC, ATW heat pumps of up to 70kW are required to show their heating efficiency on the energy label. The purpose of the energy label is to inform customers about the energy efficiency of a heating unit. The efficiency for space heating is ranked from A+++ to D (from September 2019). In the case of domestic hot water, it is from A+ to F (from September 2019).

Product label

This label is for individual heating units, such as an ecodan heat pump. Typically, the space heater label is used for ecodan systems with a hydro box, and the combination heater label is used for ecodan systems with a cylinder unit.

These labels are delivered with all ecodan outdoor units.

What is the package label?


A heating system can use several energy-related products, such as a controller or solar thermal system. Therefore, a label showing the efficiency of the total heating system is required. The category range is defined from A^{+++} to G.

Creating the package label is the responsibility of the installers and distributors. A useful tool on the Mitsubishi Electric website is available to easily create the labels for ecodan products and controllers.

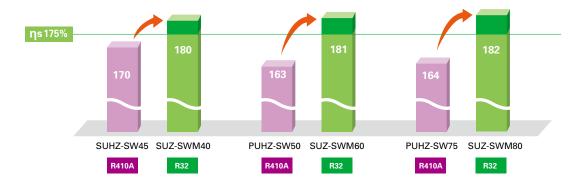
http://erp.mitsubishielectric.eu/erp/options

Package label

This label is for heating systems that use several energy-related products, such as a controller or a solar thermal system.

Customised package labels including ecodan heat pumps and the FTC6 controller can be created on the Mitsubishi Electric website.

New R32 Eco Inverter Line-up


Energy Efficient and Environmentally Friendly Heating

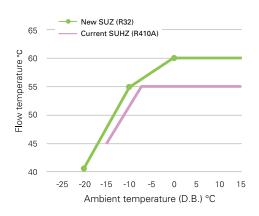
- Wide variety of product line with R32 refrigerant
- More energy efficient than conventional eco inverter models

High Performance

All models have achieved the "RANK A+++" for SCOP at low temperature.

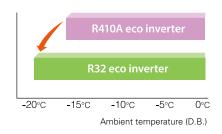
Low Noise

Compared with conventional outdoor unit, New R32 eco inverter achieved lower noise level, assuring the flexibility of installation in dense residential areas.



*Compared SUZ-SWM40/60/80VA with SUHZ-SW45VA/PUHZ-SW50VKA/PUHZ-SW75VHA

*Rated condition (According to EN12102)


60°C Flow Temperature

Along with it's increased lower operating range the New R32 range is capable of delivering a higher flow rate of 60°C, 5°C higher than the conventional model.

Guaranteed Operating Range Expansion

Guaranteed heating operating range is extended to -20°C.

Reducing Refrigerant Amount

CO2 equivalent emission t-CO2 eq CO2 equivalent emission less than 1/3* depending on the model! 1 Model name SUHZ-SWM40VA Refrigerant amount 1.3kg 1.2kg GWP 2088 (R410A) 675 (R32) t-CO2 eq 2.714 0.810

^{*}Source: IPCC 4th Assessment Report, global warming potential (GWP) 100-year value. Comparison of 2088 (R410A) and 675 (R32).

Dedicated Heat Pump for Residence

reddot award 2018

Stylish and Compact

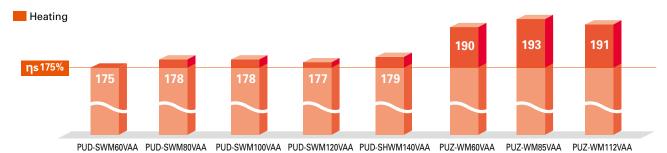
The Stylish Design and Compact Size Harmonises Residential Application

- Simple and elegant design by rounding left and right corners of the unit.
- Concealing the fan by matching the panel and the grille in dark colour.
- Unified shape and safety by setting the fan whole backwards and matching the grille on the same level of the front panel.
- Wider lineup with environmental-friendly R32 refrigerant.

1,020mm 480mm 1,050mm

High Performance

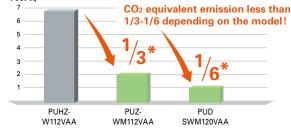
New Compressor



- Compact
- High performance
- Flash injection*
- *ZUBADAN (SHWM) only

ErP Lot 1 Compliant with Highest Seasonal Space Heating Energy Efficiency Class A+++

All models have achieved the "RANK A+++" for SCOP at low temperature.

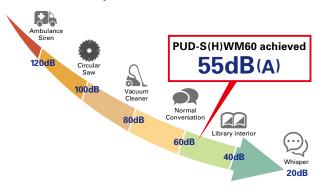

60°C Flow Temperature at Low Ambient Temperature

60°C max flow temprature can be maintained up to Ambient -7°C. (For PUD-S(H)WM models)

Reducing Refrigerant Amount

<R410A vs R32> CO2 equivalent emission t-CO2 eq

Model name	PUHZ-W112VAA	PUZ-WM112VAA	PUD-SWM120VAA
Refrigerant amount	3.3kg	3.0kg	1.6kg
GWP	2088 (R410A)	675 (R32)	675 (R32)
t-CO2 eq	6.890	2.025	1.080


^{*}Source: IPCC 4th Assessment Report, global warming potential (GWP) 100-year value

Compact with Silence

Noise Reduction-10dB(A)

Mitsubishi Electric heat pumps are designed to give you highly efficient and eco-friendly heating with 10dB(A) less in PWL. Compared with conventional models.

* Rated condition (According to EN12102)

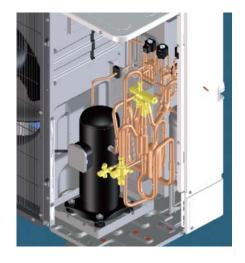
Blowing Air

To Reduce Fan Noise

- Optimising fan position
- Optimising bell mouth shape
- Bigger fan diameter

Enclosing Noise

Shutting Out Noise from Compressor


• The structure of double enclosing

Primary: enclosing a compressor (the structure is patented.) Secondary: enclosing machine room.

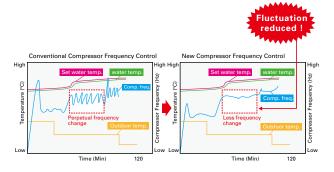
Avoiding Vibration and Resonance

- Dedicated soft rubber mount for the compressor to avoid vibration.
- Optimising piping structure to avoid vibration and resonance.

New Control for Eco-friendly Heating

Defrost Improvement

Conventional models often switch to defrost operation even when there is not much frost on outdoor units. By defecting frost more precisely, it is possible to prevent frequent on/off for defrosting and to give you more comfort.


*Comparison between prior PUHZ-SHW-AA model and new PUD-S(H)WM-AA model.

Maximum number of operational hours at our Company's laboratory (external temperature –15°C).

Hours of continuous operation may differ depending on external temperature conditions.

New Compressor Frequency Control

By reducing frequency changes (from 17 to 4 times per hour), hunting is prevented. Reducing fluctuation improves efficiency and prolongs compressor life.

D generation Indoor Unit

All-in-one Compact Indoor Unit

- All-in-one: Key functional components are incorporated
- Compact cylinder unit: 1,400~2,050mm in height
- Compact hydro box: Only 530×360mm footprint
- Easy installation: Factory fitted pressure relief valve
- Easy service: Relevant parts are located at the front of the unit for easy maintenance
- Easy transport: Handles attached on front and back (cylinder unit)

Line-up

ecodan's line-up has many types of indoor units to satisfy diverse customers' needs, requests and local regulations.

It includes various capacity units, with/without booster heater, with/without an expansion vessel, etc.

In addition, a reversible hydro box and a reversible cylinder unit are available.

Hydro box Cylinder unit Available options

- Packaged or Split type
- With/without booster heater
- With/without expansion vessel
- Cylinder unit has an integrated 170L/200L/300L stainless steel tank
- Hydro box is control ready for domestic hot water with a stand-alone tank (locally supplied)

Reversible Models

(for heating/cooling)

Perfect Comfort in Winter and Summer Time, Thanks to Our Reversible Models.

Reversible models are now available for both hydro box and cylinder units (Both for split type and cylinder unit for packaged type).

The new reversible cylinder is now able to produce cold water for cooling use and can alternatively produce domestic hot water in summer time.

Easy Installation and Low Maintenance

Simple Piping Arrangement

All water piping is aligned at the rear side of the unit for easy connection and neat finish.

Built-in Drain Pan for Reversible Cylinder Models

Reversible models now include a built-in space saving drain pan and the drain socket is positioned at the back of the unit. With use of the adjuster bolt, the outlet height can be higher than 50mm, allowing 5m drainage.

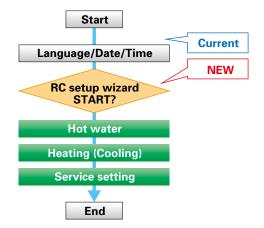
Hydro Box Piping Arrangement Improvement

Through structural innovation related to the space around the pipes, the area where the spanner can be moved has been increased, thus improving pipe work and enabling it to be completed smoothly.

Minimum Additional Water Required

In average/warmer conditions, minimum additional water is required for outdoor unit. If there is enough water amount inside water pipe, radiator, or underfloor heating no buffer tank is required.

*Refer to the indoor unit installation manual for specific outdoor unit models.


Easy Adjustment

Adjust bolt capable of 50mm expansion for easy installation on uneven surfaces.

Initial Setting Wizard

In addition to language, date and time, you can set up hot water and heating/cooling operation, pump speed, flow rate range initial setting much simpler than previous models.

Operation Data Monitoring

Time, operation mode, flow/return/tank temperature, can be displayed on main remote controller.

Sample display of monitoring setting

		26 F	eb 2019	10:00
10:00 - 🄆			THW5 54°C	
9:55 🔆				
9:50 - ×;-	48°C	48°C	54°C	20L
9:45 끏	60°C	56°C	54°C	15L
9:40 👗	59°C	55°C	52°C	15L
i				(1/5)

2 Zone Kit

 You can select from 3 types of pump operations, 1. Fixed speed mode, 2. Fixed pressure mode, 3. Energy saving mode, depending on your preference.

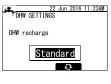
- All-in-one kit: Key functional components are incorporated in 2 zone kit.
- Easy installation: G1 screw type flexipiping to avoid brazing.
- Compact size: Just to fit on the top of cylinder unit, also wall mountable.

High Performance

Improved Efficiency

With additional thermistor (THW5A), ηwh [%] rating is improved by more than 40% compared to previous C generation 200L models allowing 170L and 200L to achieve A+, the highest possible domestic hot water efficiency rank.

Excellent DHW efficiency



	170L	200L	300L	
	ղwh [%]	ղwh [%]	ղwh [%]	
Conventional	-	96~104	-	
New	120~148	135~159	118~128	
Load Profile	L	L	XL	
DHW Rank	A+	A+	A/A+	

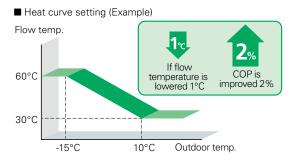
Thermistor Position of Cylinder

The thermistor position is now selectable allowing the unit to accommodate for different water demands in order to maximise the efficiency of the unit for any size of household or application.

Using two thermistors equipped with all sizes of tanks, you can now select the DHW recharge amount from two options (Standard/Large). It helps accommodate for different water demands in order to maximise the efficiency of the unit for any size of household or application. This mode can be selected from main remote controller.

Unique Technology of ecodan

Auto Adaptation

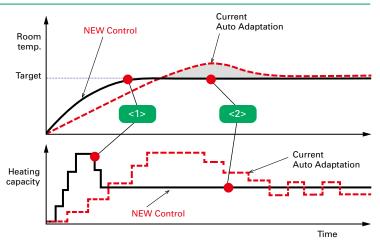

Maximise Energy Savings While Retaining Comfort at All Times

Settings can be performed using an SD card.

*SD logo is a trademark of SD-3C, LLC

Regarding the relation of flow temperature and unit performance, a 1°C drop in the flow temperature improves the coefficient of performance (COP) of the ATW system by 2%. This means that energy savings are dramatically affected by controlling the flow temperature in the system.

In a conventional system controller, the flow temperature is determined based on the pre-set heat curve depending on the actual outdoor temperature. However, this requires a complicated setting to achieve the optimal heat curve.

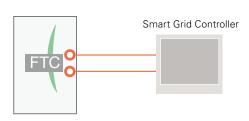

Auto Adaptation Improvement

Mitsubishi Electric's Auto Adaptation Function Automatically Tracks Changes in the Actual Room Temperature and Outdoor Temperature and Adjusts the Flow Temperatures Accordingly.

Aiming to realise further comfort and energy savings, Mitsubishi Electric has already introduced a revolutionary new controller. Auto Adaptation function measures the room temperature and outdoor temperature, and then calculates the required heating capacity for the room. Simply stated, the flow temperature is automatically controlled according to the required heating capacity, while optimal room temperature is maintained at all times, ensuring the appropriate heating capacity and preventing energy from being wasted.

Furthermore, by estimating future changes in room temperature, the system works to prevent unnecessary increases and decreases in the flow temperature. Accordingly, Auto Adaptation maximises both comfort and energy savings without the need for complicated settings.

For Mitsubishi Electric ecodan, by introducing improved control logic, we acheived faster heating and more energy saving.



- <1> Fast heating with improved accuracy in learning building heat load
- <2> Energy saving by avoiding over heating and capacity fluctuation with better control response, i.e. control interval and resolution

Smart Grid Ready Function

In recent years renewable energy generation has become popular. However, this rapid growing causes the problem of supply and demand gap of electricity. The aim of "SG Ready" is to make the electricity demand response more flexible by creating a uniform interface for the smart grid integration of heat pumps. Air-to-Water units need to be able to change the operation pattern when the signal is received from the Smart Grid Controller

New ecodan Cylinder, Hydro box and FTC have been modified to communicate with Smart Grid Controller. The communication protocol is based on "SG Ready" label regulation. (Version 1.1; gültig ab 01.01.2013)

Pattern	Input 1	Input 2	Operation	
1	OFF	OFF	Normal operation	
2	ON	OFF	Switch ON recommendation	
3	OFF	ON	Switch OFF command	SG
4	ON	ON	Switch ON command	

Pattern 1: Normal operation

When there is no signal from the Smart Grid Controller, DHW and Heating operate according to user settings.

Pattern 2: Switch ON recommendation

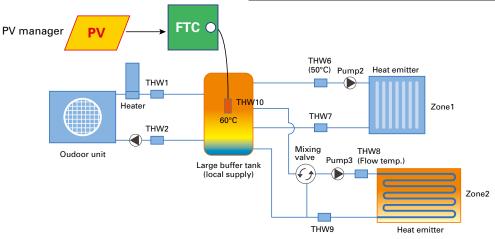
When set to the "Switch ON" recommendation, the target temperature of DHW is increased a specified amount and the heating "Thermo ON" condition range is extended.

Pattern 3: Switch OFF command

When the "Switch OFF" command is received, both DHW and Heating are turned off.

Pattern 4: Switch ON command

When the "Switch ON" command is received, the target temperature of DHW is increased to the maximum target temperature and Heating continues.


Improved Smart Grid Ready

SG ready icon on main remote controller indicates that SG ready is active and its setting can be easily operated with main remote controller. Improved SG ready function enables you to choose the target temperature in unit of 1°C. Also, when PV manager is interlocked with ecodan and ecodan receivers its signal, heat is stored as much as possible while heat pump and/or electric heater running.

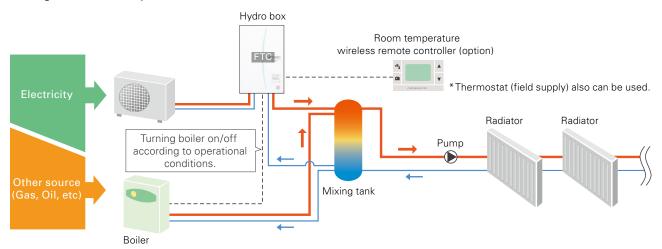
Heat storage in large buffer tank will be made available for zone2 as well when peak cut signal is on. As long as a mixing valve keeps its control, zone2 flow temperature is maintained.

Pattern	Operation	R/C indication
1	Normal operation	
2	Switch ON recommendation	
3	Switch OFF command	SG
4	Switch ON command (while PV is generating)	

Intelligent Hybrid Control (boiler interlock)

An Existing Boiler Can Be Used for Extra Heating Capacity in an Efficient Way

*SD logo is a trademark of SD-3C, LLC


The flexibility of ecodan's intelligent control allows the system to be combined with the boiler currently in use. Additionally, this control can judge which heating source to use either ecodan or the existing boiler, based on various conditions*.

In the event of one heating unit not working due to some unforeseen problem, the other heating system can be used as a back-up, thereby preventing the heating system operation from stopping completely.

*Please see below "Heat source switchover".

Intelligent system combining a boiler with ecodan

■ Intelligent boiler interlock system

^{*} Items such as a mixing tank, and pump are not included and need to be purchased locally.

Heat source switchover - Choose appropriate system based on needs

4 types of heat source switchover logic

- ① Switchover based on actual outdoor temperature
 - Heat source switchover occurs when the outdoor temperature drops below a pre-set temperature.
- 2 Switchover based on running cost
 - Heat source switchover occurs by judging optimal operation based on running cost.
 - *Pre-registration of the energy price of electricity, and gas or oil per 1kWh is necessary.
- ③ Switchover based on CO₂ emission level
 - Heat source switchover occurs to minimise CO₂ emission.
 - *Pre-registration of CO₂ emission amount from electricity and gas or oil is necessary.
- ④ Switchover can also be activated via external input
 - For example, the peak cut signal from electric power company.

ettings can b an SD card.

2 Zone Control (for heating/cooling)

Improved Simultaneous Control of Two Different Zones

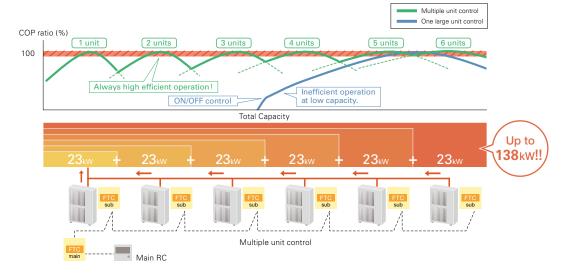
Using ecodan, it is possible to control two different flow temperatures, thereby managing two different heating load requirements. The system can adjust and maintain two flow temperatures when different temperatures are required for different rooms; for example, controlling a flow temperature of 40°C for the bedroom radiators and another flow temperature of 30°C for the living room floor heating

Moreover, mixing valve control is advanced for improving zone 2 comfort by using heat storage in buffer tank. Also, new controller monitors the temperature inside buffer tank and prioritizes using the heat inside the tank to avoid frequent on/off operation when using 2 zone control.

■ Two temperature zones Wireless remote controller 2 zone kit with locally supplied components as thermistor 40°C Hydro box Pump Mixing control Flow switch FTC Mixing Pump Mixing tank/header Flow switch Underfloor heating

*Items such as a mixing tank, mixing valve flow switch and pumps are not included and need to be purchased locally.

Multiple Unit Control


Connect up to 6 Units - Automatic Control of Multiple Units for Bigger Capacity and Better Efficiency

A maximum of 6 units* can be configured according to the heating/cooling load of the building. The most efficient number of operating units is determined automatically based on heating/cooling load. This enables ecodan to provide optimal room temperature control, and thus superior comfort for room occupants. Also incorporated is a rotation function that enables each unit to run for an equal time period.

If one of the units malfunctions when using the Multiple Unit Control, another unit can be automatically operated for back-up, thereby preventing the system operation from stopping completely.

*Only same models (same capacity) can be used.

■ Multiple unit control

Remote Controllers

Smart User-friendly Controller with Stylish Design

Main remote controller

- Large screen and backlight for excellent visibility, even in dark environment
- Multi-language support (supports 15 languages)
- Can be removed from main unit and installed in a remote location (up to 500m)
- Quick reading of operation data (7.5 times faster than previous model)
- Wide range of convenient functions in response to user demand Function settings
 - Energy monitoring
 - Two-zone control (cooling and heating)
 - Two separate schedules
 - Summer time setting
 - Built-in room temperature sensors

 - Hybrid control (boiler interlock)
- Floor drying mode
- Weekly timer
- Holiday mode
- Legionella prevention
- Error codes

Receiver

PAR-WT50R-E (Option) Wireless remote controller

Wireless remote controller (optional)

- Built-in room temperature sensor; easy to place in the best position to detect room temperature
- Wiring work eliminated
- Simple design that is easy to operate
- Remote control from any room without needing to choose an installation location
- Backlight and big buttons that are easy to operate
- Domestic hot water boost and cancellation
- Simplified holiday mode

Energy Monitoring

View Electricity Consumption and Heat Output on the Remote Controller

*SD logo is a trademark of SD-3C, LLC

Every end user can now easily check the energy data of the ecodan heat pump.

Other features

- Daily, monthly and yearly data are stored and can be displayed using the main remote controller.
- External power meter and heat meter can be connected for accurate measurement.
- SD card is also available for storing data.
- *Using pre-set values on the main remote controller, estimated energy consumption/output can be shown without external power and a heat meter.

Depending on operating condition and system configuration, there is some possibility to show different data from the reality.

*This function is available depending on the version of the outdoor unit model.

Summer Time Setting

Easy Adjustment for **Summer Time**

Just switch the summer time mode 'on' using the main remote controller and the clock in the main remote controller is adjusted to summer time hours

This function can release the end user from clock setting tasks.

Two Separate Schedules

Pre-setting Two Different Schedules for Winter and Summer Seasons

an SD card

Settings can be

Two different schedule settings are available for use via the main

These schedules can be pre-set and changed depending on the season. For example, from November to March, space heating and domestic hot water are used; however, during warm months such as from April to October, only domestic hot water is used.

Easy Commissioning

Pump for Primary Water Circuit* Speed Setting Possible Using ecodan's Main Remote Controller

Even when the system is running, pump output can be set to one of five different settings using the main remote controller.

The person commissioning the system can adjust this speed much more easily.

*Speed setting of pump for domestic hot water is not available through the main remote controller when the system is running.

Flow sensor newly incorporated

The flow sensor is key for monitoring energy output and can also be used to detect flow error as well.

- Flow rate can be checked on the main remote controller.
- Flow rate can also be shown as graphs using the SD card tool.

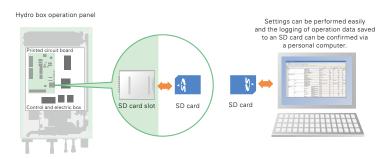
Run indoor unit* without outdoor unit

During installation or situations such as an outdoor unit malfunction, the indoor unit can be operated using a heater. While using this mode, flow and tank temperature are selectable.

Fixing and maintenance of the outdoor unit can be done without stopping heating and domestic hot water operation*.

- *Models with electric heater only.
- *When the indoor unit operation stops, please check all settings after the outdoor unit is connected.

Settings can be performed using an SD card.


*SD logo is a trademark of SD-3C, LLC

SD* Card

For Easier Settings and Data Logging

The initial setting for ecodan is now simpler than ever before. The special software enables the required initial settings to be saved to an SD card using a personal computer. The system set-up is as easy as moving the SD card from the computer to the SD card slot in the indoor unit. Compared to the previous procedure of inputting settings using the main controller at the installation site, a remarkable reduction in set-up time has been achieved. Thus, it is ideal for busy installers.

*SD card function is only used at the time of installation.

Items that can be pre-set

Simply copying pre-set data to an SD card,

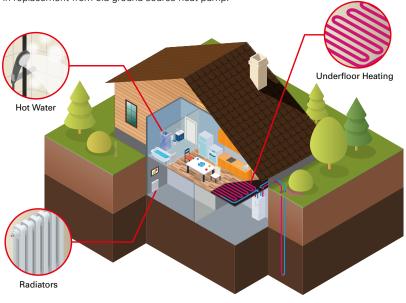
the same settings can input into another unit using the SD card.

- Initial settings (time display, contact number, etc.)
- Heating settings
 - Auto adaptation
 - Heat curve
- Two different temperature zones (heating and cooling)
- Interlocked boiler operation settings
- Holiday mode settings
- Schedule timer settings (two separate schedules)
- Domestic hot water settings
- Legionella prevention settings

All items that are set by the main controller can be set via a personal computer.

Data that can be stored

Operation data up to a month long can be stored on a single SD card

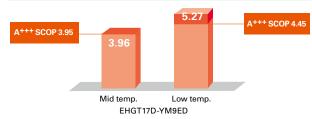

- Consumed electrical energy
- Delivered energy
- Flow rate
- Operation time
- Defrost time
- Actual temperature
- Room temperature
- Flow temperature
- Return temperature
- Domestic hot water temperature
- Outdoor temperature
- Error record
- Input signal
- Etc.

ecodan geodan

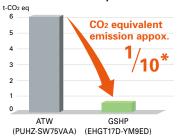
Excellent Performance with Mitsubishi Electric First Residential Ground Source Heat Pump

Ground source heat pump works best especially in replacement from old ground source heat pump.

Performance / Function


High Performance

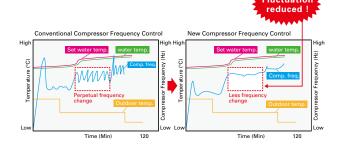
ErP Lot 1 Compliant with highest seasonal space heating energy efficiency class A+++.



Low GWP refrigerant R32 contributes the reduction of CO₂ emission compared with conventional R410A refrigerant

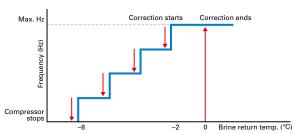
A⁺⁺⁺ Class Energy Efficiency

<ATW vs GSHP> CO2 equivalent emission



Model name	PUHZ- SW75VAA	EHGT17D- YM9ED		
Refrigerant amount	3.0kg	0.9kg		
GWP	2088 (R410A)	675 (R32)		
t-CO2 eq	6.264	0.608		

^{*}Source: IPCC 4th Assessment Report, global warming potential (GWP) 100-year value. Comparison of 2088(R410A) and 675 (R32).


New Compressor Frequency Control

By reducing frequency changes (from 17 to 4 times per hour), hunting is prevented. Reducing fluctuation improves efficiency and prolongs compressor life.

Borehole Protection Control

When the unit detects low underground temperature, it automatically reduces the capacity by decreasing heat source collection in order to protect the borehole.

When the brine return temperature is below -8°C and brine outlet temperature is below -12°C, the unit operates only by booster heater. The correction tempeature can be changed by dip SW.

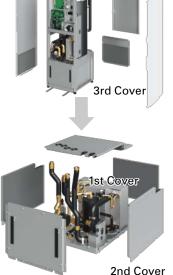
Comfort with Silence

Mitsubishi Electric heat pumps are designed to give you highly efficient and eco-friendly heating with the lowest possible noise level. ecodan geodan achieved industry-leading low noise, 42dB(A)*.

Silencing Noise

The triple covering structure of the compressor unit greatly reduces sound level through noise absortion.

1st Cover


Compressor sound insulation box (with noise absorbing felt and damper)

2nd Cover

Module Box (with noise absorbing felt)

3rd Cover

Outside panel (with noise absorbing felt)

Avoiding Vibration Noise

Rubber mounted stabilizer plate cushions the vibration noise of the compressor

Easy Installation & Transportation

At only 1750mm, ecodan geodan is the class-leading compact unit on the market, making it the ideal solution for rooms and basements with a low ceiling height.

Easy Transportation

Compressor module can be removed for easier installation and transportation. Once removed, the tank can be transported horizontally.

Flexible Piping Work

Pipings on top are placed in a Zig-Zag shape. This enables easier installation without interrupting each piping work, especially in case of replacement.

Easy Adjustment

Adjust bolt capable of 50mm expansion for easy installation even on uneven surfaces.

Mr.SLIM+

A Smart Air Conditioning and Hot Water Supply System Conceived from Eco-conscious Ideas

Mr. SLIM+ has a heat recovery function, which uses waste heat from air conditioners to heat water. Thanks to heat recovery, the Mr. SLIM+ model can achieve a COP of 7.0*, resulting in intelligent systems with amazing efficiency.

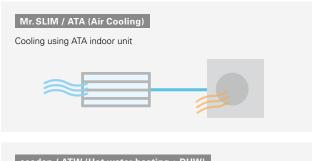
*Conditions for air-to-air cooling: Indoor 27°C (dry bulb), 19°C (wet bulb); Outdoor 35°C (dry bulb)

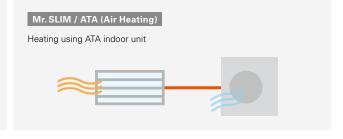
1 Unit, 2 Roles – Total Comfort Year-round

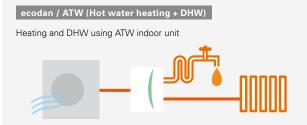
Air Conditioning and Hot Water Supply Matching the Needs of Each Room

All-in-one outdoor unit (air conditioning, domestic hot water supply and hot water heating)

Mr. SLIM for Air-to-Air


Mr. SLIM+ utilises a duct system that enables the air conditioning or heating of multiple rooms, and other indoor unit type systems that it is possible to fit to various applications.


ecodan for Air-to-Water


✓Domestic hot water (DHW) supply ✓Heating for multiple rooms

Various Operations

Specifications

Indoor	unit				PLA-ZM71EA	PKA-M71KAL	PCA-M71KA	PSA-RP71KA	PEAD-M71JA	PEAD-M71JAL
Outdoor unit					PUHZ-FRP71VHA2	PUHZ-FRP71VHA2	PUHZ-FRP71VHA2	PUHZ-FRP71VHA2	PUHZ-FRP71VHA2	PUHZ-FRP71VH
Refrige	rant						R410)A*1		
ower s	supply	Outdoor (V / P	hase / Hz)				230 / Sir	ngle / 50		
Air-to-Air	Cooling	Capacity	Rated	kW	7.1	7.1	7.1	7.1	7.1	7.1
ATA)			Min-Max	kW	3.3-8.1	3.3-8.1	3.3-8.1	3.3-8.1	3.3-8.1	3.3-8.1
		Total input	Rated	kW	1.88	1.93	1.93	2.15	2.10	2.04
		EER			3.77	3.67	3.67	3.30	3.38	3.48
		Design load		kW	7.1	7.1	7.1	7.1	7.1	7.1
			city consumption *2	kWh/a	376	386	384	409	444	427
		SEER *4	, , , , , , , , , , , , , , , , , , , ,		6.6	6.4	6.4	6.0	5.5	5.8
			Energy-efficiency class		A ⁺⁺	A ⁺⁺	A ⁺⁺	A ⁺	A	A ⁺
	Heating	Capacity	Rated	kW	8.0	8.0	8.0	8.0	8.0	8.0
	(average	Gapasity	Min-Max	kW	3.5-10.2	3.5-10.2	3.5-10.2	3.5-10.2	3.5-10.2	3.5-10.2
	season)	Total input	Rated	kW	2.11	2.29	2.29	2.42	2.11	2.11
		COP	Mateu	KVV	3.80	3.50	3.50	3.30	3.79	3.79
				134/			4.7	4.7		4.9
		Design load		kW	4.7	4.7 4.7 (–10°C)	4.7 (–10°C)	4.7 4.7 (–10°C)	4.9	4.9 (-10°C)
		Declared capacity	at reference design temperature		4.7 (–10°C)				4.9 (–10°C)	
			at bivalent temperature	kW	4.7 (–10°C)	4.7 (–10°C)	4.7 (–10°C)	4.7 (–10°C)	4.9 (–10°C)	4.9 (-10°C)
			at operation limit temperature	kW	3.5 (–20°C)	3.5 (–20°C)	3.5 (–20°C)	3.5 (–20°C)	3.7 (–20°C)	3.7 (-20°C)
		Back-up hear		kW	0	0	0	0	0	0
		Annual electricity consumption *2 kWh/		kWh/a	1,509	1,564	1,556	1,699	1,791	1,791
		SCOP *4			4.3	4.2	4.2	3.8	3.8	3.8
			Energy-efficiency class		A ⁺	A ⁺	A ⁺	А	Α	А
r-to-Water	Nomina	I flow rate (for I	heating)	L/min			22.	90		
TW)	Heating*5	3*5 A7W35	Capacity	kW	8.00	8.00	8.00	8.00	8.00	8.00
			Input	kW	1.98	1.98	1.98	1.98	1.98	1.98
			COP		4.05	4.05	4.05	4.05	4.05	4.05
		A2W35	Capacity	kW	7.50	7.50	7.50	7.50	7.50	7.50
			Input	kW	2.67	2.67	2.67	2.67	2.67	2.67
			СОР		2.81	2.81	2.81	2.81	2.81	2.81
	Heat	W45	Capacity (ATA cooling + ATW)	kW	7.1+8.0	7.1+8.0	7.1+8.0	7.1+8.0	7.1+8.0	7.1+8.0
		У	Input	kW	1.90	1.93	1.95	2.02	2.15	2.13
	(ATA cooling &		COP		7.95	7.82	7.74	7.48	7.02	7.09
	ATW) *6	W55	Capacity (ATA cooling + ATW)	kW	7.1+9.0	7.1+9.0	7.1+9.0	7.1+9.0	7.1+9.0	7.1+9.0
			Input	kW	2.97	3.00	3.02	3.09	3.22	3.20
			COP		5.42	5.37	5.33	5.21	5.00	5.03
	AT\A/ ind	door unit		5.42 5.37 5.33 5.21 5.00 5.03 Cylinder unit or Hydro box (see previous page)						
Outdoo		Dimensions	HxWxD			Суг	943-950-		ge/	
Julaoo	runit		HXVVXD	mm	70	70			70	70
		Weight	l	kg	73	73	73	73	73	73
		Air volume	Cooling	m³/min	50	50	50	50	50	50
			Heating	m³/min	50	50	50	50	50	50
		Sound pressure	Cooling	dB(A)	47	47	47	47	47	47
		level (SPL)	Heat recovery	dB(A)	47	47	47	47	47	47
			ATA Heating	dB(A)	49	49	49	49	49	49
			ATW Heating	dB(A)	49	49	49	49	49	49
		Sound power	Cooling	dB(A)	67	67	67	67	67	67
		level (PWL)	Heat recovery	dB(A)	67	67	67	67	67	67
			ATA Heating	dB(A)	68	68	68	68	68	68
			ATW Heating	dB(A)	68	68	68	68	68	68
		Operating cur	_	Α	19.0	19.0	19.0	19.0	19.0	19.0
				Α	25	25	25	25	25	25
xt.pipi	ng	Diameter	Liquid/Gas	mm	9.52/15.88	9.52/15.88	9.52/15.88	9.52/15.88	9.52/15.88	9.52/15.88
. p.p.	J	Max. length	Out-In	m	, , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	30 (for ATA) +		, , , , , , , , , , , , , , , , , , , ,	1, 10.00
		Max. height	Out-In	m	20	20	20	20	20	20
211022	tood and	_		°C	-15~+46	-15~+46	-15~+46	-15~+46	_15~+46	-15~+46
Guaranteed oper (outdoor)		aung range	Cooling*3							
			Heating	ç	−20 ~+21	−20 ~+21	−20 ~+21	-20~+21	−20 ~+21	-20~+21
outdoo			ATW	°C	−20 ~+35	−20 ~+35	−20 ~+35	-20~+35	−20 ~+35	-20~+35

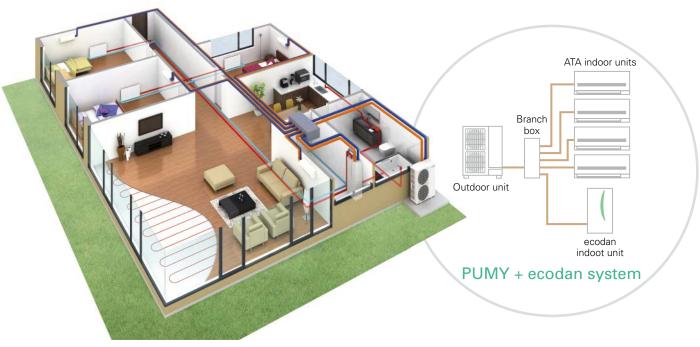
^{*1} Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1 kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.
*2 Energy consumption based on standard test results. Actual energy consumption will depend on how the appliance is used and where it is located.
*3 Optional air protection guide is required where ambient temperature is lower than –5°C.
*4 SEER/SCOP values are measured based on EN14825.
*5 Air-to-Water values are measured based on EN14511 (Circulation pump input is not included.).
*6 Conditions for Air-to-Air cooling: Indoor 27°C (dry bulb) /19°C (wet bulb); Outdoor 35°C (dry bulb).

PUMY+ecodan

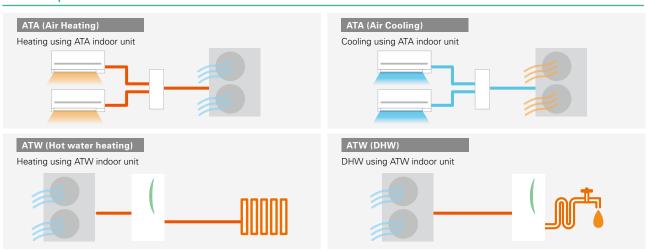
Air-to-Air and Air-to-Water Hybrid Multi Split System

1 Unit, 2 Roles - Total Comfort Year-round

Air Conditioning and Hot Water Supply Matching the Needs of Each Room


All-in-one outdoor unit (air conditioning, domestic hot water supply and hot water heating)

PUMY for Air-to-Air


PUMY utilises various indoor units, enabling the air conditioning or heating of multiple rooms, and controls each unit individually.

ecodan for Air-to-Water

✓Domestic hot water (DHW) supply
✓Heating for multiple rooms

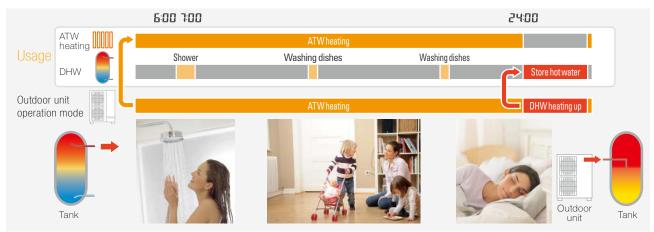
Main Operation Patterns

Optional Operation Patterns* (simultaneous)

Usage Pattern All-in-one System Solution

Summer 2-in-1 Operation

In summer ATA cooling and DHW are utilised. Keep your room comfortable with ATA cooling during high temperature daytime. Heat pump operates to heat up water stored in the DHW tank when ATA is not operated. The hot water can be utilised for shower and washing dishes during daytime.


Spring & Autumn 2-in-1 Operation

In spring and autumn, ATA heating and DHW are utilised. ATA heating can warm up each room quickly during the low temperature morning and evening. Heat pump operates to heat up water stored in the DHW tank when ATA is not operated. The hot water can be utilised for shower and washing dishes during daytime.

Winter ecodan

In winter ATW heating and DHW are utilised. ATW heating warms home all the day in severe cold weather. ATW heating stops temporarily only when the heat pump operates to heat up water stored in the DHW tank.

Model name						PUMY- P112VKM5(-BS)	PUMY- P125VKM5(-BS)	PUMY- P140VKM5(-BS)	PUMY- P112YKM(E)4(-BS)	PUMY- P125YKM(E)4(-BS)	PUMY- P140YKM(E)4(-BS)	
Power suppl	у					1-phas	se 220 - 230 - 240\	/, 50Hz		se 380 - 400 - 415\		
Air-to-Air	Cooling	Capacity			kW	12.5	14.0	15.5	12.5	14.0	15.5	
(ATA)	(nominal)*1	Power input			kW	2.79	3.46	4.52	2.79	3.46	4.52	
		EER				4.48	4.05	3.43	4.48	4.05	3.43	
	Temp. range	Indoor temp.			W.B.				24°C			
	of cooling	Outdoor temp.	*2		D.B.		Т		52°C	Т	1	
	Heating (nominal)*1	Capacity			kW	14.0	16.0	18.0	14.0	16.0	18.0	
	(nominal)**	Power input			kW	3.04	3.74	4.47	3.04	3.74	4.47	
	_	COP				4.61	4.28	4.03	4.61	4.28	4.03	
	Temp. range of heating	Indoor temp.			W.B.				27°C			
		Outdoor temp.			D.B.				15°C			
Air-to-Water (ATW)		rate (for heatin	<u> </u>		L/min				5.8			
	Heating*3	A7W35	Capacity		kW				2.5			
			Power input		kW				06			
			СОР						08			
		A2W35	Capacity		kW	10.0 3.50						
			Power input		kW							
	0	COP			- D D				86			
	Guaranteed operating	ATW Heating			D.B.	-20 - +21°C						
	range	ATA + ATW	DHW ATA heating + DI	DA/	D.B.	D.B20 - +35°C						
	_					7 - +21°C						
	Manianum O	ATA heating + ATW heating *4			D.B.	−10 - +21°C 55						
Outdoor	Indoor unit	Maximum Outlet water temp. Indoor unit ATA Total capacity				50 to 130% of outdoor unit capacity						
unit	connectable	only Model				15-100/8	15-100/8	15-100/8	15-100/8	15-100/8	15-100/8	
			Quantity	Mixed system*12		15-140*5/10	15-140*5/10*6	15-140* ⁵ /10* ⁶	15-140*5/10	15-140*5/10*6	15-140*5/10*6	
		ATA + ATW individual operation	ATA + ATW Total capacity							ST20C or EHSC) *		
			dividual Model/Quantity	Branch box system		15-100/8	15-100/8	15-100/8	15-100/8	15-100/8	15-100/8	
				Mixed system*12		15-140* ⁵ /10	15-140*5/10*6	15-140*5/10*6	15-140*5/10	15-140*5/10*6	15-140*5/10*6	
		ATA + ATW simultaneous operation	-		IVIIXCU SYSTOIII		,				ST20C or EHSC) *	
			simultaneous Model/Quantit		ATA*12		15/1*8	15-25/2*9	15-42*11/3*10	15/1*8	15-25/2*9	15-42*11/3*10
				model, additivy	ATW		15/1	10 20/2		C or EHSC) / 1	10 20/2	10 42 /0
	Sound pressu	ıre level (meası	red in anechoic ro		dB <a>	49 / 51	50 / 52	51 / 53	49 / 51	50 / 52	51 / 53	
			d in anechoic roor		dB <a>	69 / 71	70 / 72	71 / 73	69 / 71	70 / 72	71 / 73	
		iping diameter		Liquid pipe	mm	9.52 flare					1,	
	" " " " " " " " " " " " " " " " " " "	. 5		Gas pipe	mm				flare			
	Fan	Type x Quantit	V					Propelle	r fan × 2			
		Airflow rate	•		m³/min			1	10			
					L/s	1,883						
					cfm	3,884						
		Motor output			kW			0.074	+ 0.074			
	Compressor	Type × Quantit	у					Scroll hermetic	compressor x 1			
		Starting metho	od					Inve	erter			
		Motor output			kW	2.9	3.5	3.9	2.9	3.5	3.9	
	External dime	ensions (H × W	× D)		mm			1,338 × 1,05	0 × 330 (+40)			
	Weight				kg		122		YI	(M: 125 / YKME: 1	36	

į	v.	
3		ı

	Indoor	Outdoor	Piping length	Level difference	
Cooling	27°C DB / 19°C WB	35°C DB	7.5m	0m	
Heating	20°C DB	7°C DB / 6°C WB	7.5m	0m	

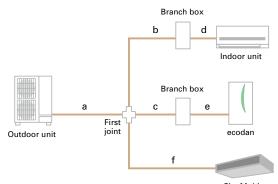
- *2 10 to 52°C D.B.: When connecting PKFY-P15/20/25VBM, PFFY-P20/25/32VKM, PFFY-P20/25/32VLE(R)M, PEFY-P*VMA3 or M, S and P series indoor unit.
 *3 In the case of ATW single connection. Input to circulation pump is not included.
 *4 In the case of simultaneous operation of ATA heating and ATW heating, target flow temperature range is restricted to 45-55°C and when the ambient temp is under 7°C,
- the flow temp is lowered.
 *5 Up to P100 when connecting via branch box.
- *6 Up to 11 units when connecting via 2 branch boxes. *7 Only one ecodan unit can be connected.

- "7 / Uniy one ecodan unit can be connected.

 *8 Exceptionally, one MSZ-SF15VA or MSZ-AP15VF can be connected.

 *9 Exceptionally, two MSZ-SF15VA or MSZ-AP15VF can be connected.

 *10 Exceptionally, three MSZ-SF15VA or MSZ-AP15VF can be connected.


 *11 In the case of City Multi connection, maxmum is P32.

 *12 PKFY and PFFY series are not connectable.

Piping specifications

m	150*	a+b+c+d+e+f
m	80	a+b+d or a+c+e
'''	85	a+f
m	55	a+b+c
m	95	d+e
m	30	borcorf
m	25	d or e
m	50 / 40	
	m m m m	m 80 85 m 55 m 95 m 30 m 25

PUMY+ecodan Compatibility Table

ATW branch box connection compatibility table

Series	Туре	Model name	Compatibility	Type	Model name	Compatibility	Type	Model name	Compatibility
ATW	Cylinder	EHST20C-VM2/6D	•	Hydro	EHSC-VM2/6D	•	Branch	PAC-MK53BC	•
	unit	EHST20C-YM9D	•	box	EHSC-YM9D	•	box	PAC-MK33BC	•
		EHST20C-TM9D	•		EHSC-TM9D	•		PAC-MK53BCB	•
		EHST20C-YM9ED	•		EHSC-YM9ED	•		PAC-MK33BCB	•

Connectable indoor unit capacity

For individual operation ATA+ATW (no simultaneous operation) ATA: Max 130% of outdoor unit capacity + ATW (EHST20C or EHSC)

Outdoor capacity 12.5kW	
ATW indoor unit (Cylinder or Hydro box) 11.2kW	Connectable ATA indoor unit total capacity: Max.16.2kW (130%)
Outdoor capacity 14.0kW	
ATW indoor unit (Cylinder or Hydro box) 11.2kW	Connectable ATA indoor unit total capacity: Max.18.2kW (130%)
Outdoor capacity 15.5kW	
ATW indoor unit (Cylinder or Hydro box) 11.2kW	Connectable ATA indoor unit total capacity: Max.20.2kW (130%)

For simultaneous operation of ATA+ATW Max 100% of outdoor unit capacity: ATA + ATW (EHST20C or EHSC)

To difficulties of operation of the transfer o	outdoor arm oupdor	.y.,, . , .	TW (Energy of Energy
Outdoor capacity 12.5kW			
ATW indoor unit (Cylinder or Hydro box) 11.2kW	ATA capacity Max. 1.3kW	ally, one MS	Z-SF15VA or MSZ-AP15VF can be connected.
Outdoor capacity 14.0kW			
ATW indoor unit (Cylinder or Hydro box) 11.2kW	ATA capacity Max. 2.8kW	*Exception	nally, two units of MSZ-SF15VA or MSZ-AP15VF can be connected.
Outdoor capacity 15.5kW			
ATW indoor unit (Cylinder or Hydro box) 11.2kW	ATA capacity Ma	ax. 4.3kW	*Exceptionally, three units of MSZ-SF15VA or MSZ-AP15VF can be connected.

Cylinder u	mit (Haati	na anluk							CII -	apacity					
		ng only)>		EHST17D-	EHST17D-	EHST20D-	EHST20D-	EHST20D-		EHST20D-	EHST20D-	EHST30D-	EHST30D-	EHST30D-	EHST30I
Model name	9			VM2D	YM9D	MED	VM2D	VM6D	YM9D	YM9ED	TM9D	MED	VM6ED	YM9ED	TM9ED
		Туре								Heating only	/				
		Expansion vessel		レ	レ	-	レ	V	V	-	レ	_	_	_	_
		Booster heater (2/6/9 kW)		レ	レ	_	レ	レ	レ	レ	レ	_	レ	レ	レ
Dimensions		HxWxD	mm	1400x595 x680									95×680		
Weight (em	pty)		kg	93	96	93	99	100	102	96	102	113	115	117	117
Control Boa	rd Power su	ipply (Phase / V / Hz)		~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V 50Hz	, ∼ /N,230V, 50Hz	∼ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	∼ /N,230V, 50Hz	~ /N,230 50Hz
Heater	Booster	Power supply (Phase / V / Hz)		~ /N,230V, 50Hz	3 ∼ ,400V, 50Hz	-	∼ /N,230V 50Hz	, ∼ /N,230V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,230V, 50Hz	_	~ /N,230V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,230 50Hz
	heater	Capacity	kW	2	3+6	_	2	2+4	3+6	3+6	3+6	-	2+4	3+6	3+6
		Current	Α	9	13	_	9	26	13	13	23	_	26	13	23
		Breaker size	Α	16	16	_	16	32	16	16	32	-	32	16	32
Domestic hot water tank	Volume / N	Material	L/-	170 / Stainless steel	170 / Stainless steel 300 / Stainless steel 300 / Stainless steel										
Guranteed	Ambient		°C						0 - 35 (≦	≦80%RH)					
operating	Outdoor	Heating	°C					S	ee outdoor	unit spec ta	ble				
range *1		Cooling	°C							_					
Target	Heating	Room temperature	°C						10	- 30					
temperature		Flow temperature	°C						20	- 60					
Cooling Room temperature			°C							_					
Flow temperature			°C							_					
			°C	70	70	*2			70			*2		70	
performanc	performance Water heater energy efficiency class		class	A+ A-A+											
Sound pressure level (PWL) dB (A)			(4) 41												

^{*1} The indoor environment must be frost-free
*2 For the model without booster heater and immersion heater, the maximum allowable hot water temperature is 3°C lower than maximum outlet water of outdoor unit. For the maximum outlet water of outdoor unit, refer to outdoor unit data book.

<cylinder th="" ι<=""><th>unit (Heati</th><th>ing only)></th><th></th><th></th><th></th><th></th><th></th><th>Medium</th><th>capacity</th><th></th><th></th><th></th><th></th></cylinder>	unit (Heati	ing only)>						Medium	capacity				
Model nam	e			EHST20C- MED	EHST20C- VM2D	EHST20C- VM6D	EHST20C- YM9D	EHST20C- YM9ED	EHST20C- TM9D	EHST30C- MED	EHST30C- VM6ED	EHST30C- YM9ED	EHST30C- TM9ED
		Туре						•	ng only				
		Expansion vessel		-	V	V	V	_	V	_	-	_	_
		Booster heater (2/6/9 kW)		-	V	レ	V	レ	V	-	V	V	レ
Dimensions	3	HxWxD	mm		1600x595x680 2050x595x						95×680		
Weight (em	pty)		kg	103	110	110	112	107	112	120	122	124	124
Control Boa	rd Power si	upply (Phase / V / Hz)	•	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz
Heater	Booster	Power supply (Phase / V / Hz)		-	~ /N,230V, 50Hz	~ /N,230V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,400V, 50Hz	_	~ /N,230V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,230V, 50Hz
	heater Capacity k			-	2	2+4	3+6	3+6	3+6	_	2+4	3+6	3+6
		Current	Α	-	9	26	13	13	23	_	26	13	23
		Breaker size	Α	-	16	32	16	16	32	-	32	16	32
Domestic hot water tank	Volume / I	Materia l	L/-			200 / Stai	nless steel				300 / Stai	nless steel	
Guranteed	Ambient		°C		0 - 35 (≦80%RH)								
operating range *1	Outdoor	Heating	°C				5	See outdoor i	unit spec tabl	le			
range		Cooling	°C					-	_				
Target	Heating	Room temperature	°C					10	- 30				
temperature		Flow temperature	°C					20	- 60				
range	Coolimg Room temperature °0		°C					-	_				
Flow temperature °		°C					-	_					
DHW tank				*2			70			*2		70	
pertormano	erformance Water heater energy efficiency class		A ⁺ A										
Sound pres	Sound pressure level (PWL) dB (A)		(A) 40										

^{*1} The indoor environment must be frost-free
*2 For the model without booster heater and immersion heater, the maximum allowable hot water temperature is 3°C lower than maximum outlet water of outdoor unit.
For the maximum outlet water of outdoor unit, refer to outdoor unit data book.

<hydro bo<="" th=""><th>x (Heating</th><th>only)></th><th></th><th></th><th></th><th>Small o</th><th>apacity</th><th></th><th></th><th></th><th></th><th>Medium</th><th>n capacity</th><th></th><th></th><th>Large</th><th>capacity</th></hydro>	x (Heating	only)>				Small o	apacity					Medium	n capacity			Large	capacity
Model nam	е			EHSD- MED	EHSD- VM2D	EHSD- VM6D	EHSD- YM9D	EHSD- YM9ED	EHSD- TM9D	EHSC- MED	EHSC- VM2D	EHSC- VM6D	EHSC- YM9D	EHSC- YM9ED	EHSC- TM9D	EHSE- MED	EHSE- YM9ED
		Туре			•	•				Heating	g only	•					
		Expansion vessel		_	V	V	レ	_	V	_	レ	V	V	-	V	_	_
		Booster heater (2/6/9 kW)		_	レ	レ	レ	レ	レ	_	V	レ	レ	レ	レ	_	V
Dimensions	3	HxWxD	mm						800x5	30×360						950×6	00×360
Weight (em	pty)		kg	36	43	44	44	40	44	40	47	48	48	43	48	61	63
Control Boa	rd Power su	upply (Phase / V / Hz)	•	~ /N,230V, 50Hz	~/N,230V, 50Hz	~ /N,230V, 50Hz	~/N,230V, 50Hz	~ /N,230V, 50Hz	~/N,230V, 50Hz	~/N,230V, 50Hz	~ /N,230V, 50Hz	~ /N,230V, 50Hz	~/N,230V, 50Hz	~/N,230V, 50Hz	~/N,230V, 50Hz	~/N,230V, 50Hz	~ /N,230V 50Hz
Heater	Booster	Power supply (V / Phase / Hz)		_	~/N,230V, 50Hz	~ /N,230V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,230V, 50Hz	-	~ /N,230V, 50Hz	~ /N,230V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,400V, 50Hz	3 ~ ,230V, 50Hz	-	3 ~ ,400V 50Hz
	heater	Capacity	kW	_	2	2+4	3+6	3+6	3+6	-	2	2+4	3+6	3+6	3+6	-	3+6
		Current	Α	-	9	26	13	13	23	-	9	26	13	13	23	-	13
		Breaker size	Α	_	16	32	16	16	32	-	16	32	16	16	32	-	16
Guranteed	Ambient		L/-			•				0 - 35 (≦	80%RH)			•			
operating range *1	Outdoor	Heating	°C						See	outdoor u	ınit spec t	able					
range i		Cooling	°C							-	-						
Target	Heating	Room temperature	°C							10	- 30						
temperature range		Flow temperature	°C							20	- 60						
range	Coolimg	Room temperature	°C							=	-						
Flow temperature °C					-												
Sound pres	sure level (F	PWL)	dB (A)			4	1					4	.0				45

^{*1} The indoor environment must be frost-free.

ndoor	unit				NEW		NEW	NEW		NEW	NEW
Cylinder	unit (Reve	ersib l e)>					Small	apacity			
Model nam	е			ERST17D-VM2D	ERST17D-VM6D	ERST20D-VM2D	ERST20D-VM6D	ERST20D-YM9D	ERST30D-VM2ED	ERST30D-VM6ED	ERST30D-YM9EI
		Туре					Heating a	nd Cooling			
		Expansion vessel		V	レ	レ	V	レ			
		Booster heater (2/6/9 kW)		レ	レ	レ	レ	レ	レ	V	レ
Dimensions	5	HxWxD	mm	1400x595x680	1400x595x680	1600x595x680	1600x595x680	1600x595x680	2050x595x680	2050x595x680	12050x595x680
Weight (em	ipty)		kg	94	94	100	100	102	115	116	117
Control Boa	ard Power s	upply (Phase / V / Hz)	•	~/N, 230V, 50Hz	~/N, 230V, 50H						
Heater	Booster	Power supply (V / Phase / Hz)		~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	3 ~ , 400V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	3~, 400V, 50H
	heater	Capacity	kW	2	2+4	2	2+4	3+6	2	2+4	3+6
		Current	Α	9	26	9	26	13	9	26	13
		Breaker size	Α	16	32	16	32	16	16	32	16
Domestic hot water tank	Volume / f	Materia l	L/-	170 / Stainless steel	170 / Stainless steel	200 / Stainless steel	200 / Stainless steel	200 / Stainless steel	300 / Stainless steel	300 / Stainless steel	300 / Stainless steel
Guranteed	Ambient		°C				0 - 35 (≦	80%RH)			
operating	Outdoor	Heating	°C				See outdoor	unit spec table			
range *1		Cooling	°C				See outdoor ur	nit spec table *2			
Target	Heating	Room temperature	°C				10	- 30			
temperature range		Flow temperature	°C				20	- 60			
range	Coolimg	Room temperature	°C					=.			
		Flow temperature	°C				5 -	25			
DHW tank		Max. hot water temperature	°C				7	0			
performano	e	Water heater energy efficiency	class			A ⁺				A - A+	
Sound pres	sure level (f	PWL)	dB (A)	41							

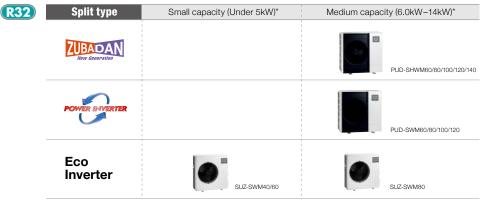
^{*1} The indoor environment must be frost-free.
*2 During cooling operation at low outdoor temperature (10°C or lower), frozen water may cause damage on plate heat exchanger.

					NEW	NEW		NEW	NEW		
Cylinder	unit (Reve	ersible)>				Medium	capacity				
Model nam	е			ERST20C-VM2D	ERST20C-VM6D	ERST20C-YM9D	ERST30C-VM2ED	ERST30C-VM6ED	ERST30C-YM9E		
		Туре				Heating an	d Cooling				
		Expansion vessel		レ	V	V					
		Booster heater (2/6/9 kW)		レ	レ	V	V	レ	レ		
Dimensions	3	HxWxD	mm	1600x595x680	1600x595x680	1600x595x680	2050x595x680	2050x595x680	2050x595x680		
Weight (em	pty)		kg	110	111	112	122	122	124		
Control Boa	rd Power s	upply (Phase / V / Hz)	•	~/N, 230V, 50Hz							
Heater	Booster	Power supply (V / Phase / Hz)		~/N, 230V, 50Hz	~/N, 230V, 50Hz	3∼, 400V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	3 ∼, 400V, 50Hz		
	heater	Capacity	kW	2	2+4	3+6	2	2+4	3+6		
		Current	Α	9	26	13	9	26	13		
		Breaker size	Α	16	32	16	16	32	16		
Domestic hot water tank	Volume / I	Materia l	L/-	200 / Stainless steel	200 / Stainless steel	200 / Stainless steel	300 / Stainless steel	300 / Stainless steel	300 / Stainless steel		
Guranteed	Ambient		°C			0 - 35 (≦	80%RH)				
operating range *1	Outdoor	Heating	°C			See outdoor u	nit spec table				
range " i		Cooling	°C			See outdoor un	it spec table *2				
Target	Heating	Room temperature	°C			10 -	30				
temperature range		Flow temperature	°C			20 -	60				
range	Coolimg	Room temperature	°C			=					
Flow temperature			°C	5 - 25							
DHW tank Max. hot water temperature			°C	70							
performance Water heater energy efficiency class			/ class	A ⁺ A							
Sound pressure level (PWL) dB (A			dB (A)	(A) 40							

^{*1} The indoor environment must be frost-free.
*2 During cooling operation at low outdoor temperature (10°C or lower), frozen water may cause damage on plate heat exchanger.

						(NEW)	(NEW)			(NEW)	(NEW)		
<hydro bo<="" td=""><td>x (Reversi</td><td>ible)></td><td></td><td></td><td>;</td><td>Small capacity</td><td>/</td><td></td><td>Medium</td><td>capacity</td><td></td><td>Large o</td><td>apacity</td></hydro>	x (Reversi	ible)>			;	Small capacity	/		Medium	capacity		Large o	apacity
Model nam	е			ERSD-MED	ERSD-VM2D	ERSD-VM6D	ERSD-YM9D	ERSC-MED	ERSC-VM2D	ERSC-VM6D	ERSC-YM9D	ERSE-MED	ERSE-YM9ED
		Туре					•	Heating a	nd Cooling	•			•
		Expansion vessel		-	V	レ	V	-	V	レ	V	-	-
		Booster heater (2/6/9kW)		-	V	V	V	-	レ	レ	V	-	レ
Dimensions	5	HxWxD	mm		800x530x360 950x60							00x360	
Weight (em	ipty)		kg	38	44	43	44	41	48	48	48	62	64
Control Boa	ard Power s	upply (Phase / V / Hz)		~/N, 230V, 50Hz	~/N, 230V, 50Hz	∼/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	∼/N, 230V, 50Hz	∼/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz
Heater	Booster	Power supply (V / Phase / Hz)		-	~/N, 230V, 50Hz	~/N, 230V, 50Hz	3∼, 400V, 50Hz	-	~/N, 230V, 50Hz	∼/N, 230V, 50Hz	3∼, 400V, 50Hz	-	3 ~, 400V, 50Hz
	heater	Capacity	kW	-	2	2+4	3+6	-	2	2+4	3+6	-	3+6
		Current	Α	-	9	26	13	-	9	26	13	-	13
		Breaker size	Α	-	16	32	16	-	16	32	16	-	16
Guranteed	Ambient		°C					0 - 35 (≦	80%RH)	•			
operating range *1	Outdoor	Heating	°C					See outdoor	unit spec table				
range i		Cooling	°C				5	See outdoor u	nit spec table *	2			
Target	Heating	Room temperature	°C					10	- 30				
temperature range		Flow temperature	°C	20 - 60									
range	Coolimg Room temperature °C								=				
	Flow temperature °C			5 - 25									
Sound pres	sure level (f	PWL)	dB (A)		4	1		4	10	40	40	4	15

^{*1} The indoor environment must be frost-free *2 If you use our system in cooling mode at the low ambient temperature (10°C or below), there are some risks of plate heat exchanger breaking by frozen water.


Dutdoor	aint				Eco Inverter	
Model name				SUZ-SWM40VA	SUZ-SWM60VA	SUZ-SWM80VA
Refrigerant					R32*1	
Dimensions		H×W×D	mm	880×840×330	880×840×330	880×840×330
Weight			kg	54	54	54
Power supply	y (V / Phase / F	łz)		230 / 1-ph / 50	230 / 1-ph / 50	230 / 1-ph / 50
Heating	A7W35*2	Nominal	kW	4.0	6.0	7.5
		СОР		5.20	4.86	4.70
	A2W35*2	Nominal	kW	4.0	5.0	6.5
		СОР		3.90	3.33	3.40
Average clim		Class		A+++	A+++	A+++
outlet 35°C*3	i	ης		180	181	182
Average clim		Class		A++	A++	A++
outlet 55°C*3	1	ης		129	130	131
		Class		A+	A+	A+
(Average clim	W 200L(L) Load Profile crage climate)*4			159	148	148
Max outlet w	ater temperat	ure (°C)		60	60	60
Cooling	A35W7*2	Nominal	kW	4.5	5.0	5.4
		EER		3.29	3.03	3.00
	A35W18*2	Nominal	kW	5.6	6.0	6.3
		EER		4.97	4.88	4.80
PWL (Heating	g)* ⁵		dB(A)	58	60	62
Max operatin	g current		Α	13.9	13.9	13.9
Breaker size			Α	16	16	16
Piping	Diameter	Liquid/Gas	mm	6.35 / 12.7	6.35 / 12.7	6.35 / 12.7
	Length	Out-In	m	5-30	5-30	5-30
	Height	Out-In	m	Max 30	Max 30	Max 30
Guaranteed Heating Operating Range DHW	Heating		°C	-20°C~24°C	−20°C~24°C	–20°C~24°C
	DHW		°C	−20°C~35°C	−20°C~35°C	−20°C~35°C
	Cooling		°C	10°C~46°C	10°C~46°C	10°C~46°C

Outdoor	r unit				Power Inverte	r, Heating only			ZUB	ADAN, Heating	only	
Model name				PUD- SWM60VAA	PUD- SWM80V/YAA	PUD- SWM100V/YAA	PUD- SWM120V/YAA	PUD- SHWM60VAA	PUD- SHWM80V/YAA	PUD- SHWM100V/YAA	PUD- SHWM120V/YAA	PUD- SHWM140V/YAA
Refrigerant								R32*1				1
Dimensions		H×W×D	mm	1020×1050×480	1020×1050×480	1020×1050×480	1020×1050×480	1020×1050×480	1020×1050×480	1020×1050×480	1020×1050×480	1020×1050×480
Weight			kg	101	101/114	105/118	105/118	102	102/115	108/121	108/121	110/122
Power suppl	y (V / Phase / H	lz)					VAA: 230 / 1	l-ph / 50, YAA: 40	0 / 3-ph / 50			
Heating	A7W35*2	Nominal	kW	5.0	6.0	8.0	10.0	5.0	6.0	8.0	10.0	12.0
		COP		4.76	4.76	5.00	4.70	4.99	5.03	5.00	4.80	4.70
	A2W35*2	Nominal	kW	6.0	8.0	10.0	12.0	6.0	8.0	10.0	12.0	14.0
		COP		3.60	3.55	3.30	3.24	3.80	3.75	3.45	3.30	3.05
Average clim		Class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++
outlet 35°C*3	3	ης		175	178/176	178/177	177/176	178	181/179	180/178	179/177	179/177
Average clim		Class		A++	A++	A++	A++	A++	A++	A++	A++	A++
outlet 55°C*3	3	η _S		130	131/130	131/130	129/128	134	135/134	136/135	135/134	134/134
	/300L(XL) Load	Class		A+ / A	A+ / A	A+ / A	A+ / A	A+ / A	A+ / A	A+ / A	A+ / A	A+ / A
Profile (Avera	ge climate)*4	ηwh		148/121	148/121	148/121	148/121	148/121	148/121	148/121	148/121	145/121
Max outlet w	vater temperati	ıre (°C)		60	60	60	60	60	60	60	60	60
PWL (Heating	g)* ⁵		dB(A)	55	56	59	60	55	56	59	60	62
Max operation	ng current		Α	16.5	22/8	26/10	28/12	16.5	22/8	26/10	28/12	35/12
Breaker size			Α	20	25/16	30/16	32/16	20	25/16	30/16	32/16	40/16
Piping	Diameter	Liquid/Gas	mm	6.35/12.7	6.35/12.7	6.35/12.7	6.35/12.7	6.35/12.7	6.35/12.7	6.35/12.7	6.35/12.7	6.35/12.7
	Length	Out-In	m	2 - 30	2 - 30	2 - 30	2 - 30	2 - 30	2 - 30	2 - 30	2 - 30	2 - 25
	Height	Out-In	m	Max. 30	Max. 30	Max. 30	Max. 30	Max. 30	Max. 30	Max. 30	Max. 30	Max. 25
Guaranteed	Heating		°C	-25°C~24°C	-25°C~24°C	-25°C~24°C	-25°C~24°C	-28°C~24°C	-28°C~24°C	-28°C~24°C	-28°C~24°C	-28°C~24°C
Operating Range	DHW		°C	–25°C~35°C	–25°C~35°C	-25°C~35°C	–25°C~35°C	–28°C~35°C	-28°C~35°C	–28°C~35°C	-28°C~35°C	-28°C~35°C

^{*1} Refrigerant leakage contribute to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atomosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.

*2 Air-to-Water values are measured based on EN14511 (Circulation pump input is not included.).

*3 No values are measured based on EN14825. *4 Nwh values are measured based on EN16147. *5 Sound power levels are measured based on EN12102.

Dutdoor	a i i i i					Power Inverter		
Model name	•			PUHZ- SW75V/YAA(-BS)	PUHZ- SW100V/YAA(-BS)	PUHZ- SW120V/YHA(-BS)	PUHZ- SW160YKA(-BS)	PUHZ- SW200YKA(-BS)
Refrigerant						R410A*1		
Dimensions		H×W×D	mm	1020×1050×480	1020×1050×480	1350×950×330	1338×1050×330	1338×1050×330
Weight			kg	92/104	114/126	118/130	136	136
Power suppl	y (V / Phase / H	z)			VAA, VHA: 23	30 / 1-ph / 50, YAA, YHA, YKA: 4	100 / 3-ph / 50	
Heating	A7W35*2	Nominal	kW	8.0	11.2	16.0	22.0	25.0
		COP		4.40	4.46	4.10	4.20	4.00
	A2W35*2	Nominal	kW	7.5	10.0	12.0	16.0	20.0
		COP		3.40	3.32	3.24	3.11	2.80
Average clim		Class		A++	A++	A++	A ⁺⁺	A++
outlet 35°C*3	3	ης		162/160	167/165	162/162	161	163
Average clim		Class		A++	A++	A++	A++	A++
outlet 55°C*3	3	ης		129/128	130/129	125/125	125	127
	/300L(XL) Load	Class		A+/A	A+ / A	A ⁺ / A	-	-
Profile (Avera	ige climate)*4	ηwh		145/120	145/120	138/118	-	-
Max outlet v	vater temperati	ire (°C)		60	60	60	-	-
Cooling	A35W7*2	Nominal	kW	7.1	10.0	12.5	16.0	20.0
		EER		2.70	2.83	2.32	2.76	2.25
	A35W18*2	Nominal	kW	7.1	10.0	14.0	18.0	22.0
		EER		4.43	4.47	4.08	4.56	4.1
PWL (Heating	g)* ⁵		dB(A)	58	60	72	78	78
Max operatir	ng current		Α	22.0/11.5	28.0/12.0	29.5/13.0	19.0	21.0
Breaker size			Α	25/16	32/16	32/16	25	32
Piping	Diameter	Liquid/Gas	mm	9.52/15.88	9.52/15.88	9.52/15.88	9.52/25.4	12.7/25.4
	Length	Out-In	m	40	75	75	80	80
	Height	Out-In	m	10	10	30	30	30
Guaranteed	Heating		°C	-20°C~21°C	−20°C~21°C	-20°C~21°C	−20°C~21°C	-20°C~21°C
Operating Range	DHW		°C	-20°C~35°C	−20°C~35°C	−20°C~35°C	−20°C~35°C	-20°C~35°C
	Cooling		°C	-15°C~46°C	−15°C~46°C	-15°C~46°C	−15°C~46°C	−15°C~46°C

					ZUBA	ADAN	
Model name				PUHZ- SHW80V/YAA(-BS)	PUHZ- SHW112V/YAA	PUHZ SHW140YHA	PUHZ- SHW230YKA2
Refrigerant					R41	0A*1	
Dimensions		H×W×D	mm	1020×1050×480	1020×1050×480	1350×950×330	1338×1050×330
Weight			kg	116/128	116/128	134	143
Power supply	/ (V / Phase / H	z)			VAA, VHA: 230 / 1-ph / 50, Y/	AA, YHA, YKA: 400 / 3-ph / 50	
Heating	A7W35*2	Nominal	kW	8.0	11.2	14.0	23.0
		COP		4.65	4.40	4.22	3.65
	A2W35*2	Nominal	kW	8.0	11.2	14.0	23.0
		COP		3.55	3.22	2.96	2.37
Average clim		Class		A ⁺⁺	A++	A++	A ⁺⁺
outlet 35°C*3		ης		169/167	171/169	163	164
Average clim		Class		A ⁺⁺	A++	A++	A ⁺⁺
outlet 55°C*3		ηs		133/132	135/135	127	127
	300L(XL) Load	Class		A ⁺ / A	A+ / A	A ⁺ / A	-
Profile (Avera	ge climate)*4	ηwh		145/120	145/120	138/118	_
Max outlet w	ater temperatu	ıre (°C)		60	60	60	60
Cooling	A35W7*2	Nominal	kW	7.1	10.0	12.5	20.0
		EER		3.31	2.83	2.17	2.22
	A35W18*2	Nominal	kW	7.1	10	12.5	20.0
		EER		4.52	4.74	4.26	3.55
PWL (Heating	g)* ⁵		dB(A)	59	60	70	75
Max operatir	g current		Α	22/13	28/13	13	20
Breaker size			Α	25/16	32/16	16	25
Piping	Diameter	Liquid/Gas	mm	9.52/15.88	9.52/15.88	9.52/15.88	12.7/25.4
	Length	Out-In	m	75	75	75	80
	Height	Out-In	m	30	30	30	30
Guaranteed	Heating		°C	-28°C~21°C	-28°C~21°C	-28°C~21°C	−25°C~21°C
Operating Range	DHW		°C	-28°C~35°C	−28°C~35°C	−28°C~35°C	−25°C~35°C
	Cooling		°C	-15°C~46°C	-15°C~46°C	-15°C~46°C	−15°C~46°C

^{*1} Refrigerant leakage contribute to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atomosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R410A is 2088 in the IPCC 4th Assessment Report.
*2 Air-to-Water values are measured based on EN14825. *4 Nwh values are measured based on EN16147. *5 Sound power levels are measured based on EN12102.

R410A	Split type	Medium capacity (7.5kW-14kW)	Large capacity (≧16kW)
	ZUBADAN New Generation	PUHZ-SHW80/112AA PUHZ-SHW140	PUHZ-SHW230
	POWER INVERTER	PUHZ-SW75/100AA PUHZ-SW120	PUHZ-SW160/200

Packaged Type Specifications

Indoor unit

<Cylinder unit (Heating only)>

Model n	ame				EHPT17X- VM2D	EHPT17X- VM6D	EHPT17X- YM9D	EHPT20X- MED	EHPT20X- VM6D	EHPT20X- YM9D	EHPT20X- YM9ED	EHPT20X- TM9D	EHPT20X- MHEDW	EHPT30X- MED	EHPT30X- YM9ED
		Тур	e							Heating only					
		lmn	nersion heater		-	-	-	-	-	-	-	-	1	-	-
		Exp	ansion vessel		1	/	/	-	/	/	-	1	-	-	-
		Boo	ster heater		1	1	1	-	1	1	1	1	_	-	1
Dimensi	ons	H×V	V×D	mm		1400×595–680)			1600×5	95×680		•	2050×5	95×680
Weight (empty)			kg	86	87	89	87	94	96	90	96	94	106	110
Control	board powe	er supp	ly (Phase / V / Hz)		~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz	~/N, 230V, 50Hz
Heater Booster				Hz)	~/N, 230V, 50Hz	~/N, 230V, 50Hz	3~, 400V, 50Hz	-	~/N, 230V, 50Hz	3~, 400V, 50Hz	3~, 400V, 50Hz	3~, 230V, 50Hz	-	-	3~, 400V, 50Hz
	heater*2	Cap	acity	kW	2	2+4	3+6	-	2+4	3+6	3+6	3+6	-	-	3+6
		Cur	rent	Α	9	26	13	-	26	13	13	23	-	-	13
		Brea	aker size	Α	16	32	16	-	32	16	16	32	-	-	16
	Immersio	n Pov	ver supply (Phase / V /	Hz)	-	-	-	-	-	-	-	-	~/N, 230V, 50Hz	-	-
ŀ	heater	Сар	acity	kW	-	-	-	-	-	-	-	-	3	-	-
		Cur	rent	Α	-	-	-	-	-	-	-	-	13	-	-
		Brea	aker size	Α	-	-	-	-	-	-	-	-	16	-	-
Domesti hot water		olume /	Material	L/-	170	170 / Stainless steel 200 / Stainless steel 300 / Stainless steel								nless steel	
Guarant		mbient		°C					(- 35 (≦80%RH	1)				
operatin range*1	g Ou	utdoor	Heating	°C					See ou	tdoor unit spe	ec table				
range-			Cooling	°C						-					
Target		eating	Room temperature	°C						10~30					
tempera range	ture		Flow temperature	°C						20~60					
range	Co	ooling	Room temperature	°C						-					
			Flow temperature	°C						-					
DHW tar		ax. hot	water temperature	°C		70		*3			70			*3	70
perform	ance Wa	ater hea	ater emergy efficiency	class						A+					•
Sound p	ressure lev	el (PWI	L)	dB (A)		40									

- *1 The indoor environment must be frost-free.
 *2 Do not fit immersion heaters without thermal cut-out. Use only Mitsubishi Electric service parts as a direct replacement.
 *3 For the model without booster heater and immersion heater, the maximum allowable hot water temperature is 3°C lower than maximum outlet water of outdoor unit. For the maximum outlet water of outdoor unit, refer to outdoor unit data book.

Model n	ame					ERPT17X- VM2D	ERPT20X- MD	ERPT20X- VM2D	ERPT20X- VM6D	ERPT30X- VM2FD	ERPT30X
		[Туре	•		VIIIZO			nd cooling	VIIIZED	VIIIOEB
				ersion heater		_	_	_	-	_	_
			Expansion vessel	Expansion vessel		/	/	/	/	_	-
			Boos	ster heater		/	/ - / /				/
Dimensi	ions		H×W	/×D	mm	1400×595×680		1600×595×680	2050×5	95×680	
Weight ((empty)				kg	86	93 94 95			107	108
Control	board p	ower:	suppl	y (Phase / V / Hz)				~/N, 23	0V, 50Hz		
Heater			Hz)	~/N, 230V, 50Hz	-		~/N, 23	0V, 50Hz			
	heate	·	Capa	acity	kW	2	-	2	2+4	2	2+4
		Current		А	9	-	9	26	9	26	
				ker size	Α	16	-	16	32	16	32
		h++2 -		Power supply (Phase / V / I		-	-	-	-	-	-
	heate			Capacity		-	-	-	-	-	-
				Current		-	-	-	-	-	-
				Breaker size		-	-	-	-	-	-
Domesti hot wate		Volu	me / N	Material	L/-	170 / Stainless steel	200 / Stainless steel 300 / Stainless				
Guarant		Amb	ient		°C	·		0 - 35 (≦	80%RH)		
operatin range*1	ıg	Outd	oor	Heating	°C			See outdoor	unit spec table	,	
range .				Cooling	°C			See outdoor u	nit spec table	4	
Target		Heati	ing	Room temperature	°C			10	~30		
tempera range	iture			Flow temperature	°C			20	~60		
·ungo		Cooli	ing	Room temperature	°C				-		
				Flow temperature	°C			5~	25		
DHW tai		Max.	hot v	water temperature	°C	70	*3		7	0	
perform	ance	Wate	r hea	ter emergy efficiency	class			\ +			Д
Sound p	ressure	level	(PWL	.)	dB (A)			4	10		

- *1 The indoor environment must be frost-free.

 *2 Do not fit immersion heaters without thermal cut-out. Use only Mitsubishi Electric service parts as a direct replacement.

 *3 For the model without booster heater and immersion heater, the maximum allowable hot water temperature is 3°C lower than maximum outlet water of outdoor unit.

 For the maximum outlet water of outdoor unit.

 For the maximum outlet water of outdoor unit, refer to outdoor unit data book.

 *4 During cooling operation at low outdoor temperature (10°C or lower), frozen water may cause damage on plate heat exchanger.

Packaged Type Specifications

<hydro< th=""><th>box (</th><th>Hea</th><th>ting</th><th>only)></th><th></th><th></th><th></th><th></th><th></th><th></th></hydro<>	box (Hea	ting	only)>						
Model n	ame					EHPX- MED	EHPX- VM2D	EHPX- VM6D	EHPX- YM9D	EHPX- YM9ED
			Тур	e		Heating only				
			lmn	nersion heater		-	-	-	-	-
			Exp	ansion vessel		-	1	1	1	-
			Boo	ster heater		_ / / / /				
Dimensi	ons		H×V	V×D	mm	800×530×360				
Weight (Weight (empty)				kg	25	32	33	33	28
Control I	Control board power supply (Phase / V / Hz)			ly (Phase / V / Hz)		~/N, 230V, 50Hz				
Heater	Boost		Pov	ver supply (Phase / V /	Hz)	-	~/N, 230	V, 50Hz	3~, 400	V, 50Hz
	heate	r	Cap	acity	kW	-	2	2+4	3+6	3+6
			Cur	rent	Α	-	9	26	13	13
			Bre	aker size	Α	-	16 32 16 1			
Guarant		Amb	ient		°C	0~35 (≦80%RH)				
operatin range*1	g	Outo	loor	Heating	°C		See outd	oor unit s	pec table	
range				Cooling	°C			-		
Target		Heat	ing	Room temperature	°C			10~30		
	temperature range			Flow temperature	°C			20~60		
range			ing	Room temperature	°C			-		
				Flow temperature	°C	-				
Sound p	Sound pressure level (PWL)			L)	dB (A)			40		

*1 The	indoor	environment	must	be fro	st-free.

<hydro< th=""><th>box</th><th>(Reve</th><th>ersil</th><th>ole)></th><th></th><th>(NEW)</th><th>NEW</th><th>NEW</th><th>NEW</th></hydro<>	box	(Reve	ersil	ole)>		(NEW)	NEW	NEW	NEW	
Model na	ame					ERPX- MD	ERPX- VM2D	ERPX- VM6D	ERPX- YM9D	
			Тур	e		Heating and cooling				
		Ī	lmn	nersion heater		-	-	-	-	
		İ	Exp	ansion vessel		/	/			
		ı	Boo	ster heater		-	1	/	/	
Dimensi	ons		H×V	V×D	mm	800×530×360				
Weight (empty)	<u> </u>			kg	30 33 34 35				
Control I	Control board power supply (Phase / V / Hz)					~/N, 230V, 50Hz				
Heater	Boost		Power supply (Phase / V / Hz)			-	~/N, 230	V, 50Hz	3~, 400V, 50Hz	
	heate	r i	Cap	acity	kW	-	2	2+4	3+6	
			Cur	rent	Α	-	9	26	13	
		l	Bre	aker size	Α	-	16	32	16	
Guarante		Amb	ient		°C	0~35 (≦80%RH)				
operating range*1	g	Outd	oor	Heating	°C	Se	e outdoor u	nit spec tab	le	
range .				Cooling	°C	See	outdoor un	it spec table	e *2	
Target		Heati	ing	Room temperature	°C		10-	-30		
temperature				Flow temperature	°C		20-	-60		
range		Cooli	oling Room temperature		°C		-			
				Flow temperature	°C		-			
Sound p	Sound pressure level (PWL)			_)	dB (A)		4	0		

- *1 The indoor environment must be frost-free.
- *2 If you use our system in cooling mode at the low ambient temperature (10°C or below), there are some risks of plate heat exchanger breaking by frozen water.

^{*}Rated capacity is at conditions A2W35. (according to EN14511)

Dutdoor	unit							NEW
Model name				PUZ- WM50VHA	PUZ- WM60VAA	PUZ- WM85V/YAA	PUZ- WM112V/YAA	PUZ- HWM140V/YHA
Refrigerant						R32*1		
Dimensions		H×W×D	mm	943×950×330	1020×1050×480	1020×1050×480	1020×1050×480	1350×1020×330
Weight			kg	71	98	98/111	119/132	132/143
Power supply	(V / Phase)	/ Hz)		VHA • VAA:	230 / 1-ph / 50,	YHA • YAA: 40	0 / 3-ph / 50	
Heating	A7W35*2	Nominal	kW	5.0	6.0	8.5	11.2	14.0
		COP		5.00	5.06	4.80	4.70	4.46
	A2W35*2	Nominal	kW	5.0	6.0	8.5	11.2	14.0
		COP		3.70	3.75	3.51	3.44	3.15
Average clim		Class		A+++	A+++	A+++	A+++	A+++
outlet 35°C*3		η _s		183	190	193/190	191/189	176/175
			Class		A++	A++	A++	A++
outlet 55°C*3			129	142	139/138	134/133	132/131	
	DHW 200L(L) Load Class		3	A ⁺	A+	A+	A+	A+
Profile (Average	ge climate)*4	η _{wh}		135	145	145	148	130
Max outlet w	ater temper	ature (°C)		60	60	60	60	60
Cooling	A35W7*2	Nominal	kW	4.5	6.0	7.5	10.0	11.9
		EER		3.40	3.30	3.15	3.30	3.00
	A35W18*2	Nominal	kW	4.5	6.0	7.5	10.0	11.1
		EER		5.00	4.45	4.90	4.90	4.10
PWL (Heating	g)* ⁵		dB(A)	61	58	58	60	67
Max operatin	g current		А	13.0	13.0	22.0/11.5	28.0/13.0	35.0/13.0
Breaker size			Α	16	16	25/16	32/16	40/16
Piping	Diameter	Liquid/Gas	mm	-	-	-	-	-
	Length	Out-In	m	-	-	-	-	-
	Height	Out-In	m	-	-	-	-	-
Guaranteed	Heating		°C	-20°C~21°C	-20°C~21°C	-20°C~21°C	-25°C~21°C	-28°C~21°C
Operating Range	DHW		°C	-20°C~35°C	-20°C~35°C	-20°C~35°C	-25°C~35°C	-28°C~35°C
nange	Cooling		°C	10°C~46°C	10°C~46°C	10°C~46°C	10°C~46°C	10°C~46°C

- *1 Refrigerant leakage contribute to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atomosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional yourself or disassemble the product yourself and always ask a professional.

 The GWP of R32 is 675 in the IPCC 4th Assessment Report.

 *2 Air-to-Water values are measured based on EN14511 (Circulation pump
- *2 Air-to-Water values are measured based on EN14b input is not included.).

 *3 ηs values are measured based on EN16145.

 *4 ηwh values are measured based on EN16147.

 *5 Sound power levels are measured based on EN12102.

Optional Parts

Split type <Indoor unit>

Parts name	Model name	Cylinder	Hydrobox	Remarks
Wireless remote controller	PAR-WT50R-E	V	V	
Wireless receiver	PAR-WR51R-E	V	V	
Thermistors	PAC-SE41TS-E	V	V	For room temp.
	PAC-TH011-E	V	V	For buffer and zone (flow and return temp.)
	PAC-TH011TK2-E	-	V	For tank temp. (5m)
	PAC-TH011TKL2-E	-	V	For tank temp. (30m)
	PAC-TH012HT-E	V	V	For boiler and buffer (5m)
	PAC-TH012HTL-E	V	V	For boiler and buffer (30m)
Immersion heater	PAC-IH01V2-E	V	-	1Ph 1kW
	PAC-IH03V2-E	V	-	1Ph 3kW
Joint pipe	PAC-SG72RJ-E	V	V	For PUHZ-SW75 ø6.35 → ø9.52
	PAC-SG73RJ-E	-	V	For PUHZ-SW200YKA/SHW230YKA2 ø9.52 → ø12.7
	PAC-SG74RJ-E	V	V	For PUHZ-SW75 ø12.7 → ø15.88
	PAC-SH30RJ-E	V	V	For PUHZ-SW75AA ø9.52 → 6.35
	PAC-SH50RJ-E	V	V	For PUHZ-SW75AA ø15.88 → 12.7
Wi-Fi interface	MAC-567IF-E	レ	V	
2 Zone kit	PAC-TZ02-E	V	V	
Expansion vessel	PAC-EVP12-E1	V	-	12L

<Outdoor unit>

Parts name	Model name	R	32 (Eco Inverte	er)	R3	2 Heating only	(Power Inver	ter)		R32 Hea	ating only (ZUI	BADAN)	
		SUZ-SWM40VA	SUZ-SWM60VA	SUZ-SWM80VA	PUD-SWM60VAA	PUD-SWM80V/YAA	PUD-SWM100V/YAA	PUD-SWM120V/YAA	PUD-SHWM60VAA	PUD-SHWM80V/YAA	PUD-SHWM100V/YAA	PUD-SHWM120V/YAA	PUD-SHWM140V/YAA
Connector for drain hose heater signal output	PAC-SE60RA-E	-	-	-	V	v	v	L	V	V	V	V	v
Air discharge guide	MAC-886SG-E	V	V	V	-	-	-	-	-	-	-	-	-
	PAC-SG59SG-E	-	-	-	-	-	-	-	-	-	-	-	-
	PAC-SH96SG-E*1	-	-	-	レ*1	レ*1	レ*1	レ*1	レ*1	レ*1	レ*1	レ ∗1	レ ∗1
Air protection guide	PAC-SH63AG-E	-	-	-	-	-	-	-	-	-	-	-	-
	PAC-SH95AG-E*1	-	-	-	レ*1	レ*1	レ*1	レ*1	レ*1	レ*1	レ*1	レ*1	レ*1
Attachement	PAC-SJ82AT-E	-	-	-	V	V	V	V	V	V	レ	V	レ
Drain socket*2	PAC-SG61DS-E	-	-	-	V	V	V	V	レ	V	V	V	V
Centralized drain pan*2	PAC-SG64DP-E	-	-	-	-	-	-	-	-	-	-	-	-
	PAC-SH97DP-E	-	-	-	-	-	-	-	-	-	-	-	-
	PAC-SJ83DP-E	-	-	-	V	V	V	V	V	V	V	V	V
Base heater	MAC-642BH-U1	V	V	V	-	-	-	-	-	-	-	-	-
Control/Service tool	PAC-SK52ST	-	-	-	V	V	V	V	V	V	レ	V	レ

^{*1} Attachment (PAC-SJ82AT-E) is necessary for the Air guide *2 Cannot be used for cold climate.

Parts name	Model name		R41	0A (Power Inv	erter)			R410A (Z	(UBADAN)	
		PUHZ-SW75V/YAA	PUHZ-SW100V/YAA	PUHZ-SW120V/YHA	PUHZ-SW160YKA	PUHZ-SW200YKA	PUHZ-SHW80V/YAA	PUHZ-SHW112V/YAA	PUHZ-SHW140YHA	PUHZ-SHW230YKA2
Connector for drain hose heater signal output	PAC-SE60RA-E	L	L	v	V	·	L	V	v	v
Air discharge guide	MAC-886SG-E	-	-	-	-	-	-	-	-	-
	PAC-SG59SG-E	-	-	V	-	-	-	-	V	-
	PAC-SH96SG-E	V	V	V	V	V	V	V	-	V
Air protection guide	PAC-SH63AG-E	-	-	V	-	-	-	-	V	-
	PAC-SH95AG-E	V	V	-	V	V	V	V	-	レ
Attachement	PAC-SJ82AT-E	V	V	-	-	-	V	V	-	V
Drain socket*2	PAC-SG61DS-E	V	V	V	V	V	V	レ	-	-
Centralized drain pan*2	PAC-SG64DP-E	-	-	V	-	-	-	-	-	-
	PAC-SH97DP-E	-	-	-	V	V	-	-	-	-
	PAC-SJ83DP-E	V	V	-	-	-	V	レ	-	-
Base heater	MAC-642BH-U1	-	-	-	-	-	-	-	-	-
Control/Service tool	PAC-SK52ST	V	V	L	V	V	レ	レ	~	V

^{*1} Attachment (PAC-SJ82AT-E) is necessary for the Air guide *2 Cannot be used for cold climate.

Interface/Flow Temperature Controller

Split type

Parts name	Model name	Description
Capacity step control interface	PAC-IF011B-E	1 PC board w/ Case
Flow temperature controller	PAC-IF032B-E	1 PC board w/ Case
	PAC-IF033B-E	1 PC board w/ Case
	PAC-IF033PCB-E	10 PC board w/o case
System Controllers	PAC-IF071B-E	1 PC board w/ Case
Pressure sensor	PAC-PS01-E	For SUZ-SWM40/60/80VA
Flow sensor	PAC-FS01-E	
Thermistor	PAC-TH011-E	

Optional Parts

Packaged type

<Indoor unit>

Parts name	Model name	Cylinder	Hydrobox	Remarks
Wireless remote controller	PAR-WT50R-E	V	V	
Wireless receiver	PAR-WR51R-E	V	V	
Thermistors	PAC-SE41TS-E	V	V	For room temp.
	PAC-TH011-E	L	V	For buffer and zone (flow and return temp.)
	PAC-TH011TK2-E	-	V	For tank temp. (5m)
	PAC-TH011TKL2-E	-	V	For tank temp. (30m)
	PAC-TH012HT-E	V	V	For boiler and buffer (5m)
	PAC-TH012HTL-E	V	V	For boiler and buffer (30m)
Immersion heater	PAC-IH01V2-E	✓ (Except EHPT20X-MHEDW)	-	1Ph 1kW
	PAC-IH03V2-E	✓ (Except EHPT20X-MHEDW)	-	1Ph 3kW
EHPT accessories for UK	PAC-WK02UK-E	V	-	
Wi-Fi interface	MAC-567IF-E	V	V	
2 Zone kit	PAC-TZ02-E	V	V	
Expansion vessel	PAC-EVP12-E1	V	-	12L

Interface/Flow Temperature Controller

Packaged type

Parts name	Model name	Description
Flow temperature controller	PAC-IF033B-E	1 PC board w/ Case
	PAC-IF033PCB-E	10 PC board w/o case
System Controllers	PAC-IF072B-E	
Flow sensor	PAC-FS01-E	
Thermistor	PAC-TH011-E	

<Outdoor unit>

Parts name	Model name		R32 (Po	wer Inverter)		
		PUZ-WM50VHA	PUZ-WM60VAA	PUZ-WM85V/YAA	PUZ-WM112V/YAA	PUZ-HWM140V/YHA
Connector for drain hose heater signal output	PAC-SE60RA-E	v	v	v	v	v
Air discharge guide	PAC-SG59SG-E	V	-	-	-	v
	PAC-SH96SG-E	-	V*	レ ∗	V*	-
Air protection guide	PAC-SH63AG-E	V	-	-	-	V
	PAC-SH95AG-E	-	V*	レ ∗	レ ∗	-
Attachement	PAC-SJ82AT-E	-	v	レ	V	-
Drain socket	PAC-SG61DS-E	レ	V	レ	V	-
Centralized drain pan	PAC-SG64DP-E	レ	-	-	-	-
	PAC-SJ83DP-E	-	レ	レ	V	-

^{*}Attachment (PAC-SJ82AT-E) is necessary for the Air Guide.

Ground Source Heat Pump Specifications

				Specification with 38% propylene gly
Model name				EHGT17D-YM9ED
Heating Capacity (Min-Max)				2.5-10.0kW
Heat Output B0/W35 (Rated)	1			5.0kW
COP B0/W35				4.58
SCOP (Average Climate)	Low Temp			5.27
	Rank			A+++
	ηs*2			203%
	Mid Temp			3.96
	Rank			A+++
	ηs*2			150%
Load Profile	Лwh			134%
Average Climate)*3	Rank			A ⁺
Sound Power Level (Rated)	+4			42dB(A)
Refrigerant /Amount				R32*1/0.9kg
GWP				608
Dimensions (HxWxD)				1,750mm×595mm×680mm
DHW Tank				170L
Veight				Unit 181kg
lectrical data		Heat pump	Power supply	3ph/400V/50Hz
			Max current	8A
			Breaker	16A
		Booster heater	Power supply	3ph/400V/50Hz
			Capacity	3kW+6kW
			Current	13A
			Breaker	16A
Connections	Water	Primary circuit		ø28mm
		DHW circuit		ø22mm
	Brine	Brine circuit		ø28mm
Operating range	Heating	Room temperature		10~30°C
		Flow temperature		20~60°C
	DHW			40~60°C
	Legionella prev	vention		60~70°C
Guaranteed operating range		Ambient		0~35°C
saarantooa oporating range		7 till Storie		≦80%RH
		Water outlet temperatur		20~60°C
		Brine inlet temperature		-8~30°C
		Min. brine outlet tempe	ratura	-12°C
low rate range		Primary circuit	Max.	27.7L/min
iow rate range		r illiary circuit	Min.	7.1L/min
		Brine circuit	Max.	27.7L/min
		Drine circuit	Min.	7.1L/min
last saures fluid turs			IVIIN.	
Heat source fluid type				29 WT% Bioethanol
				38 WT% Propylene glycol
				25 WT% Ethylene glycol

^{*1} Refrigerant leakage contribute to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atomosphere. This appliance contains a refrigerant fluid with a GWP equal to 550. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 550 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional. The GWP of R32 is 675 in the IPCC 4th Assessment Report.

*2 ns values are measured based on EN14825. *3 nwh values are measured based on EN16147. *4 Sound power levels are measured based on EN12102.

D Generation

Combination Table

Split Indoor/outdoor unit

combination	utdoor unit						R	32									R	R410	Α				Hyb	TA/ rid		
			Po	owe	r in	vert	er			ZUI	BAD	AN		Po	owe	r in	vert	er	z	UBA	ADA	N	Mr. SLIM+	Р	UN	ΙΥ
		SUZ-SWM40VA	SUZ-SWM60VA	SUZ-SWM80VA	PUD-SWM60VAA	PUD-SWM80V/YAA	PUD-SWM100V/YAA	PUD-SWM120V/YAA	PUD-SHWM60VAA	PUD-SHWM80V/YAA	PUD-SHWM100V/YAA	PUD-SHWM120V/YAA	PUD-SHWM140V/YAA	PUHZ-SW75V/YAA	PUHZ-SW100V/YAA	PUHZ-SW120V/YHA	PUHZ-SW160YKA	PUHZ-SW200YKA	PUHZ-SHW80V/YAA	PUHZ-SHW112V/YAA	PUHZ-SHW140YHA	PUHZ-SHW230YKA2	PUHZ-FRP71VHA2	PUMY-P112V/YKM(E)4	PUMY-P125V/YKM(E)4	PLIMY-P140V/VKM/EVA
Heating only	EHST17D-VM2D	•	•	•	•	•			•	•				•												
Cylinder	EHST17D-YM9D	•	•	•	•	•			•	•				•												
	EHST20D-MED	•	•	•	•	•	•	•	•	•	•	•	•	•												
	EHST20D-VM2D	•	•	•	•	•	•	•	•	•	•	•	•	•												
	EHST20D-VM6D	•	•	•	•	•	•	•	•	•	•	•	•	•												H
	EHST20D-YM9D EHST20D-YM9ED	•	•	•	•	•	•	•	•	•	-	•	•	•					H			_			H	H
	EHST20D-TM9D	•	•	•	•	-	•	•	•	•	•	•	•	•					\vdash			_			\vdash	H
	EHST30D-MED	•	•	•	•	•	•	÷	•	-	•	•	•	•												H
	EHST30D-VM6ED	•	•	•	•	•	•	•	•	•	•	•	•	•												H
	EHST30D-YM9ED	•	•	•	•	•	•	•	•	•	•	•	•	•												
	EHST30D-TM9ED	•	•	•	•	•	•	•	•	•	•	•	•	•												T
	EHST20C-MED			Π			П								•	•			•	•	•		•			T
	EHST20C-VM2D														•	•			•	•	•		•	•	•	•
	EHST20C-VM6D														•	•			•	•	•		•	•	•	•
	EHST20C-YM9D														•	•			•	•	•		•	•	•	•
	EHST20C-YM9ED														•	•			•	•	•		•	•	•	•
	EHST20C-TM9D														•	•			•	•	•		•	•	•	•
	EHST30C-MED														•	•			•	•	•					L
	EHST30C-VM6ED														•	•			•	•	•					L
	EHST30C-YM9ED	┡													•	•			•	•	•					L
Damasible	EHST30C-TM9ED			_										_	•	•			•	•	•					L
Reversible Cylinder	ERST17D-VM2D	•	•	•	•	•			•	•				•												
	ERST17D-VM6D ERST20D-VM2D	•	•	•	-	•	•	•	•	•	•	•	•	•												H
	ERST20D-VM6D	•	•	•	•	•	•	•	•	•	•	•	•	•												H
	ERST20D-YM9D	•	•	•	•	•	•	•	•	•	•	•	•	•												H
	ERST30D-VM2ED	•	•	•	•	•	•	•	•	•	•	•	•	•					Н						Н	t
	ERST30D-VM6ED	•	•	•	•	•	•	•	•	•	•	•	•	•												T
	ERST30D-YM9ED	•	•	•	•	•	•	•	•	•	•	•	•	•												T
	ERST20C-VM2D														•	•			•	•	•					
	ERST20C-VM6D														•	•			•	•	•					
	ERST20C-YM9D														•	•			•	•	•					
	ERST30C-VM2ED														•	•			•	•	•					L
	ERST30C-VM6ED														•	•			•	•	•					L
	ERST30C-YM9ED	L		_	_	L	L	_	L		_	_		_	•	•			•	•	•					L
Heating only Hydro box	EHSD-MED	•	•	•	•	•	•	•	•	•	•	•	•	•												L
	EHSD-VM2D	•	•	•	•	•	•	-	•	•	•	•	•	•												
	EHSD-VM6D	•	•	•	•	•	•	•	•	•	•	•	•	•												H
	EHSD-YM9D EHSD-YM9ED	•	•	•	•	•	•	•	•	•	•	•	•	•												H
	EHSD-TM9D	•	•	•	•	•	•	÷	•	•	•	•	•	•												H
	EHSC-MED	ř	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	•	•			•	•	•		•			H
	EHSC-VM2D														•	•			•	•	•		•	•	•	•
	EHSC-VM6D														•	•			•	•	•		•	•	•	•
	EHSC-YM9D	Г													•	•			•	•	•		•	•	•	•
	EHSC-YM9ED														•	•			•	•	•		•	•	•	•
	EHSC-TM9D														•	•			•	•	•		•	•	•	•
	EHSE-MED																•	•				•				
	EHSE-YM9ED						Ц		Ц						Щ		•	•				•		Щ		L
Reversible Hydro box	ERSD-MED	•	•	•	•	•	•	•	•	•	•	•	•	•					_			_		H	L	L
	ERSD-VM2D	•	•	•	•	•	•	•	•	•	•	•	•	•				_	_		_				L	L
	ERSD-VM6D	•	•	•	•	•	•	•	•	•	•	•	•	•												\vdash
	ERSD-YM9D	•	•	•	•	•	•	•	•	•	•	•	•	•								_			\vdash	\vdash
	ERSC-MED ERSC-VM2D			\vdash		\vdash	\vdash		\vdash	\vdash	\vdash	\vdash	_		•	•			•	•	•	_		H	\vdash	H
	ERSC-VM2D ERSC-VM6D			-			H		H			H		_	•	•			-	•	•					H
	ERSC-YM9D			\vdash			\vdash		Н					\vdash	•	•			•	•	•			H		H
	ERSE-MED	H		\vdash			Н		Н			Н		\vdash		Ť	•	•	Ť	Ť	۲	•		Н		H
		-	+	\vdash	\vdash	\vdash	\vdash	-	Н	\vdash	\vdash	Н	\vdash	\vdash	Н	\vdash	•	•	\vdash		\vdash	•			\vdash	+

Packaged indoor/outdoor unit

Packaged indo	or/outdoor unit			ı	32	
			Po	wer erte	r	ZUBADAN
						₫
		PUZ-WM50VHA	PUZ-WM60VAA	UZ-WM85V/YAA	PUZ-WM112V/YAA	PUZ-HWM140V/YHA
Heating only	EHPT17X-VM2D	•	•	•	_	_
Cylinder	EHPT17X-VM6D	•	•	•		
	EHPT17X-YM9D	•	•	•		
	EHPT20X-MED	•	•	•	•	•
	EHPT20X-VM6D	•	•	•	•	•
	EHPT20X-YM9D	•	•	•	•	•
	EHPT20X-YM9ED	•	•	•	•	•
	EHPT20X-TM9D	•	•	•	•	•
	EHPT20X-MHEDW	•	•	•	•	•
	EHPT30X-MED			•	•	•
	EHPT30X-YM9ED			•	•	•
Reversible	ERPT17X-VM2D	•	•	•		
Cylinder	ERPT20X-VM2D	•	•	•	•	•
	ERPT20X-MD	•	•	•	•	•
	ERPT20X-VM6D	•	•	•	•	•
	ERPT30X-VM2ED			•	•	•
	ERPT30X-VM6ED			•	•	•
Heating only	EHPX-VM2D	•	•	•	•	•
Hydro box	EHPX-VM6D	•	•	•	•	•
	EHPX-YM9D	•	•	•	•	•
	EHPX-MED	•	•	•	•	•
	EHPX-YM9ED	•	•	•	•	•
Reversible	ERPX-MD	•	•	•	•	•
Hydro box	ERPX-VM2D	•	•	•	•	•
	ERPX-VM6D	•	•	•	•	•
	ERPX-YM9D	•	•	•	•	•

MELCloud (Wi-Fi Interface) for ecodan

MELCloud for Fast, Easy Remote Control and Monitoring of Your ecodan

MELCloud is a new Cloud-based solution for controlling ecodan either locally or remotely by computer, tablet or smartphone via the Internet. Setting up and remotely operating your ecodan heating system via MELCloud is simple and straight forward. All you need is wireless computer connectivity in your home or the building where the ecodan is installed and an Internet connection on your mobile or fixed terminal. To set up the system, the router and the ecodan WiFi interface must be paired, and this is done simply and quickly using the WPS button found on all mainstream routers.

You can control and check ecodan via MELCloud from virtually anywhere an Internet connection is available.

That means, thanks to MELCloud, you can use ecodan much more easily and conveniently.

Key Control and Monitoring Features

- 1 Turn system on/off
- 2 See status of each of your heating zones & adjust set points
- 3 See the status of your hot water cylinder & boost remotely
- 4 Live weather feed from ecodan location

Holiday mode - Set system parameters while away Schedule timer - Set 7 day weekly schedule Frost protection - Set system to run at minimum temperature Error status

6 Check energy usage report* *Additional metering hardware is required.

			For r	nedium-	temperatu	re applic	ation			Foi	· low-ter	nperature	application	on	
Outdoor unit	Indoor unit	Seasonal space heating energy efficiency class	Water heating energy efficiency class	Rated heat output under average climate conditions	Seasonal space heating energy efficiency under average climate conditions	Water heating energy efficiency under average climate conditions	Sound power level LwA indoor	Sound power level Lwa outdoor	Seasonal space heating energy efficiency class	Water heating energy efficiency class	Rated heat output under average climate conditions	Seasonal space heating energy efficiency under average climate conditions	Water heating energy efficiency under average climate conditions	Sound power level LwA indoor	Sound power level Lwa outdoor
				kW	%	%	dB	dB			kW	%	%	dB	dB
SUZ-SWM40VA	EHST17D-***D	A++	A+	4.6	129	148	41	58	A+++	A+	5.1	180	148	41	58
	ERST17D-***D	A++	A+	4.6	132	148	41	58	A+++	A+	5.1	187	148	41	58
	EHST20D-***D	A++	A+	4.6	129	159	41	58	A+++	A+	5.1	180	159	41	58
	ERST20D-***D	A++	A+	4.6	132	159	41	58	A+++	A ⁺	5.1	187	159	41	58
	EHST30D-***D	A++	A+	4.6	129	128	41	58	A+++	A+	5.1	180	128	41	58
	ERST30D-***D	A++	A+	4.6	132	128	41	58	A+++	A+	5.1	187	128	41	58
	EHSD-***D	A++	-	4.6	129	-	41	58	A+++	-	5.1	180	-	41	58
	ERSD-***D	A++	-	4.6	132	-	41	58	A+++	-	5.1	187	-	41	58
SUZ-SWM60VA	EHST17D-***D	A++	A+	6.0	130	144	41	60	A+++	A+	6.6	181	144	41	60
	ERST17D-***D	A++	A+	6.0	133	144	41	60	A+++	A ⁺	6.6	187	144	41	60
	EHST20D-***D	A++	A+	6.0	130	148	41	60	A+++	A ⁺	6.6	181	148	41	60
	ERST20D-***D	A++	A+	6.0	133	148	41	60	A+++	A ⁺	6.6	187	148	41	60
	EHST30D-***D	A++	A+	6.0	130	128	41	60	A+++	A+	6.6	181	128	41	60
	ERST30D-***D	A++	A+	6.0	133	128	41	60	A+++	A ⁺	6.6	187	128	41	60
	EHSD-***D	A++	-	6.0	130	-	41	60	A+++	-	6.6	181	-	41	60
	ERSD-***D	A++	-	6.0	133	-	41	60	A+++	-	6.6	187	-	41	60
SUZ-SWM80VA	EHST17D-***D	A++	A+	7.1	131	144	41	62	A+++	A+	7.1	182	144	41	62
	ERST17D-***D	A++	A+	7.1	133	144	41	62	A+++	A+	7.1	187	144	41	62
	EHST20D-***D	A++	A+	7.1	131	148	41	62	A+++	A+	7.1	182	148	41	62
	ERST20D-***D	A++	A+	7.1	133	148	41	62	A+++	A+	7.1	187	148	41	62
	EHST30D-***D	A++	A+	7.1	131	128	41	62	A+++	A+	7.1	182	128	41	62
	ERST30D-***D	A++	A+	7.1	133	128	41	62	A+++	A+	7.1	187	128	41	62
	EHSD-***D	A++	-	7.1	131	-	41	62	A+++	-	7.1	182	-	41	62
	ERSD-***D	A++	-	7.1	133	-	41	62	A+++	-	7.1	187	-	41	62
PUD-SWM60VAA(-BS)	E*ST17D-***D	A++	A+	6.0	130	136	41	55	A+++	A+	6.0	175	136	41	55
	E*ST20D-***D	A++	A+	6.0	130	148	41	55	A+++	A+	6.0	175	148	41	55
	E*ST30D-***D	A++	А	6.0	130	121	41	55	A+++	Α	6.0	175	121	41	55
	E*SD-***D	A++	-	6.0	130	-	41	55	A+++	-	6.0	175	-	41	55
PUD-SWM80V/YAA(-BS)	E*ST17D-***D	A++	A+	8.0	131/130	136	41	56	A+++	A+	8.0	178/176	136	41	56
	E*ST20D-***D	A++	A+	8.0	131/130	148	41	56	A+++	A ⁺	8.0	178/176	148	41	56
	E*ST30D-***D	A++	А	8.0	131/130	121	41	56	A+++	Α	8.0	178/176	121	41	56
	E*SD-***D	A++	-	8.0	131/130	_	41	56	A+++	-	8.0	178/176	-	41	56
PUD-SWM100V/YAA(-BS)	E*ST20D-***D	A++	A+	10.0	131/130	148	41	59	A+++	A+	10.0	178/177	148	41	59
	E*ST30D-***D	A++	А	10.0	131/130	121	41	59	A+++	Α	10.0	178/177	121	41	59
	E*SD-***D	A++	_	10.0	131/130	_	41	59	A+++	-	10.0	178/177	-	41	59
PUD-SWM120V/YAA(-BS)	E*ST20D-***D	A++	A+	12.0	129/128	148	41	60	A+++	A+	12.0	177/176	148	41	60
	E*ST30D-***D	A++	А	12.0	129/128	121	41	60	A+++	Α	12.0	177/176	121	41	60
	E*SD-***D	A++	_	12.0	129/128	_	41	60	A+++	-	12.0	177/176	_	41	60
PUD-SHWM60VAA(-BS)	E*ST17D-***D	A++	A+	6.0	134	136	41	55	A+++	A+	6.0	178	136	41	55
	E*ST20D-***D	A++	A+	6.0	134	148	41	55	A+++	A+	6.0	178	148	41	55
	E*ST30D-***D	A++	А	6.0	134	121	41	55	A+++	А	6.0	178	121	41	55
	E*SD-***D	A++	_	6.0	134	_	41	55	A+++	_	6.0	178	_	41	55
PUD-SHWM80V/YAA(-BS)	E*ST17D-***D	A++	A+	8.0	135/134	136	41	56	A+++	A ⁺	8.0	181/179	136	41	56
	E*ST20D-***D	A++	A+	8.0	135/134	148	41	56	A+++	A ⁺	8.0	181/179	148	41	56
	E*ST30D-***D	A++	А	8.0	135/134	121	41	56	A+++	А	8.0	181/179	121	41	56
	E*SD-***D	A++	_	8.0	135/134	-	41	56	A+++	_	8.0	181/179	_	41	56
	d profile I "	ı							1	l					

Note: E**T17/20*-***D use "Load profile L". E**T30*-***D use "Load profile XL".

Pute				For n	nedium-	temperatu	re applic	ation			For	r low-ten	nperature	application	on	
Purper	Outdoor unit	Indoor unit	seasonal space heating inergy efficiency class	nergy					ound power level Lwa utdoor	seasonal space heating inergy efficiency class	Vater heating energy ifficiency class	tated heat output under verage climate conditions	easonal space heating nergy efficiency under werage climate conditions	Vater heating energy ifficiency under average limate conditions	sound power level LwA ndoor	sound power level Lwa autdoor
PUP SHAWM10WYAAL988			00 0	> 0						တစ	> o					
PLOS SHYMM120VYALAISAB	PUD-SHWM100V/YAA(-BS)	E*ST20D-***D	A++	A+						A+++	A+					_
PUP-SHYMNIZOVYAALBSN		E*ST30D-***D	A++	Α	10.0	136/135	121	41	59	A+++	Α	10.0	180/178	121	41	59
PURS-SHYMM160/YAAL-BSS PURS-SHYMM160/YA		E*SD-***D	A++	_	10.0	136/135	_	41	59	A+++	_	10.0	180/178	_	41	59
PUD-SHWM140VYAALBS FISTOC************************************	PUD-SHWM120V/YAA(-BS)	E*ST20D-***D	A++	A+	12.0	135/134	148	41	60	A+++	A+	12.0	179/177	148	41	60
PUPLE-SHYMINIADIVYAAL-ISS PUPLE-SWYSDVYAAL-ISS		E*ST30D-***D	A++	Α	12.0	135/134	121	41	60	A+++	А	12.0	179/177	121	41	60
Part		E*SD-***D	A++	_	12.0	135/134	_	41	60	A+++	_	12.0	179/177	_	41	60
Pumassassassassassassassassassassassassass	PUD-SHWM140V/YAA(-BS)	E*ST20D-***D	A++	A+	14.0	134/134	145	41	62	A+++	A+	14.0	179/177	145	41	62
E*SD****D		E*ST30D-***D	A++	Α	14.0		121	41	62	A+++	A	14.0			41	62
RRSTI7D.***D		E*SD-***D	A++	_	14.0	134/134	_	41	62	A+++	_	14.0		_	41	62
EHST200-***0	PUHZ-SW75V/YAA(-BS)	EHST17D-***D	A++	A+	7.1	129/128	136	41	58	A++	A+	7.2	162/160	136	41	58
Philopolith		ERST17D-***D	A++	A+	7.1		136	41	58	A++	A+	7.2				58
Firstorn		EHST20D-***D	A++	A+	7.1				58	A++	A+	7.2			41	58
EHST30D.***D		ERST20D-***D	A++	A+	7.1				58	A++	A+	7.2				
ERST30D.***D		EHST30D-***D	A++	Α	7.1		120	41	58	A++	A	7.2				58
Part		ERST30D-***D	A++	Α	7.1					A++	A	7.2				
PUHZ-SW100V/YAA(-BS)		EHSD-***D	A++	_	7.1				58	A++	_	7.2				
PUHZ-SW100V/YAA(-BS)		ERSD-***D	A++	_							_	7.2				
Part	PUHZ-SW100V/YAA(-BS)										Α+					
EHST30C+**D							_									
REST30C+**D																
EHSC-***D																
Figh																
Phiz-swi120v/yha(-Bs)																
FRST2OC.***D	PUHZ-SW120V/YHA(-BS)															
EHST30C-***D A++ A 12.1 125/125 118 40 72 A++ A 12.9 162/162 118 40 72 ERST30C-***D A++ A 12.1 127/127 118 40 72 A++ A 12.9 164/164 118 40 72 EHSC-***D A++ A 12.1 125/125 - 40 72 A++ A 12.9 164/164 118 40 72 ERSC-***D A++ - 12.1 125/125 - 40 72 A++ - 12.9 164/164 - 40 72 ERSC-***D A++ - 12.1 127/127 - 40 72 A++ - 12.9 164/164 - 40 72 ERSC-***D A++ - 13.5 125 - 45 78 A++ - 12.9 164/164 - 40 72 EHSE-***D A++ - 13.5 126 - 45 78 A++ - 15.3 151 - 45 78 ERSE-***D A++ - 15.5 127 - 45 78 A++ - 15.3 152 - 45 78 ERSE-***D A++ - 15.5 129 - 45 78 A++ - 17.3 148 - 45 78 ERSE-***D A++ - 15.5 129 - 45 78 A++ - 17.3 148 - 45 78 ERSE-***D A++ A+ 9.0 133/132 145 40 59 A++ A+ 9.6 169/167 145 40 59 ERST30C-**D A++ A 9.0 133/132 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C-**D A++ A 9.0 133/132 - 40 59 A++ A 9.6 169/167 120 40 59 ERSC-**D A++ A 9.0 133/132 - 40 59 A++ A 9.6 169/167 120 40 59 ERSC-**D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERSC-**D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERSC-**D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 - 40 59 ERSC-**D A++ A 12.7 135/135 145 40 60 A++ A 13.9 171/169 145 40 60 ERST30C-**D A++ A 12.7 135/137 145 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-**D A++ A 12.7 135/137 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-**D A++ A 12.7 135/137 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-**D A++ A 12.7 135/137 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-**D A++ A 12.7 135/137 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-**D A++ A 12.7 135/137 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-**D A++ A 12.7 135/137 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-**D A++ A 12.7 135/137 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-**D A++ A 12.7 135/137 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-**D A++ A 12.7 135/137 120 40 60 A++ A 13.9 171/169 120 40 60	1 0112 000 1200/ 111/1 20/															
ERST30C-***D A++																
EHSC.***D A++ - 12.1 125/125 - 40 72 A++ - 12.9 162/162 - 40 72 ERSC.***D A++ - 12.1 127/127 - 40 72 A++ - 12.9 162/162 - 40 72 PUHZ-SW160YKA(-BS) EHSE.***D A++ - 13.5 125 - 45 78 A++ - 15.3 151 - 45 78 ERSE.***D A++ - 15.5 127 - 45 78 A++ - 15.3 152 - 45 78 PUHZ-SW200YKA(-BS) EHSE.***D A++ - 15.5 127 - 45 78 A++ - 17.3 147 - 45 78 ERSE.***D A++ - 15.5 127 - 45 78 A++ - 17.3 148 - 45 78 ERSE.***D A++ - 15.5 129 - 45 78 A++ - 17.3 148 - 45 78 PUHZ-SHW80V/YAA(-BS) EHST20C.***D A++ A+ 9.0 133/132 145 40 59 A++ A+ 9.6 169/167 145 40 59 ERST20C.***D A++ A 9.0 133/132 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C.***D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C.***D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C.***D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERSC.***D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERSC.***D A++ A 12.7 135/135 145 40 60 A++ A 13.9 171/169 145 40 60 ERST20C.***D A++ A 12.7 135/135 145 40 60 A++ A 13.9 171/169 120 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60																
ERSC.***D A++ - 12.1 127/127 - 40 72 A++ - 12.9 164/164 - 40 72 PUHZ-SW160YKA(-BS) EHSE.***D A++ - 13.5 125 - 45 78 A++ - 15.3 151 - 45 78 EHSE.***D A++ - 13.5 126 - 45 78 A++ - 15.3 151 - 45 78 PUHZ-SW200YKA(-BS) EHSE.***D A++ - 15.5 127 - 45 78 A++ - 17.3 147 - 45 78 EHSE.***D A++ - 15.5 129 - 45 78 A++ - 17.3 147 - 45 78 PUHZ-SHW80V/YAA(-BS) EHST20C.***D A++ A+ 9.0 133/132 145 40 59 A++ A+ 9.6 169/167 145 40 59 ERST30C.***D A++ A 9.0 133/132 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C.***D A++ A 9.0 133/132 - 40 59 A++ A 9.6 169/167 120 40 59 EHSC.***D A++ - 9.0 133/132 - 40 59 A++ A 9.6 172/172 120 40 59 ERSC.***D A++ - 9.0 133/132 - 40 59 A++ A 9.6 172/172 120 40 59 ERSC.***D A++ - 9.0 135/134 120 40 59 A++ - 9.6 169/167 - 40 59 ERSC.***D A++ A 12.7 135/135 145 40 60 A++ A 13.9 173/173 145 40 60 ERST20C.***D A++ A 12.7 135/135 145 40 60 A++ A 13.9 173/173 145 40 60 ERST20C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 145 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 145 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 145 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 145 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 145 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 145 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 145 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 145 40 60 ERST30C.***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 145 40 60						-							-			
PUHZ-SW160YKA(-BS) EHSE-***D A++ - 13.5 125 - 45 78 A++ - 15.3 151 - 45 78 PUHZ-SW200YKA(-BS) ERSE-***D A++ - 13.5 126 - 45 78 A++ - 15.3 152 - 45 78 PUHZ-SW200YKA(-BS) EHSE-***D A++ - 15.5 127 - 45 78 A++ - 17.3 147 - 45 78 PUHZ-SHW80V/YAA(-BS) EHST20C-***D A++ A+ A+ B- 15.5 129 - 45 78 A++ - 17.3 147 - 45 78 PUHZ-SHW80V/YAA(-BS) EHST20C-***D A++ A+ A+ B- BERST20C-***D A++ A+ BERST20C-***D A++ BERST20C-***D A++ A+ BERST20C-***D A++ BERST20C-***D A++ A+ BERST20C-***D A++ BERST20C-***D BERST20C-***D A++ BERST20C-***D BERST20C-***D A+																
ERSE-**D A++ - 13.5 126 - 45 78 A++ - 15.3 152 - 45 78 PUHZ-SW200YKA(-BS) EHSE-**D A++ - 15.5 127 - 45 78 A++ - 17.3 147 - 45 78 PUHZ-SHW80V/YAA(-BS) EHST20C-**D A++ A+ 9.0 133/132 145 40 59 A++ A+ 9.6 169/167 145 40 59 ERST30C-**D A++ A 9.0 135/134 145 40 59 A++ A 9.6 169/167 120 40 59 ERST30C-**D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C-**D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C-**D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C-**D A++ A 9.0 135/134 120 40 59 A++ A 9.6 169/167 120 40 59 ERSC-**D A++ - 9.0 135/134 120 40 59 A++ - 9.6 169/167 - 40 59 ERSC-**D A++ - 9.0 135/134 - 40 59 A++ - 9.6 169/167 - 40 59 ERSC-**D A++ A 12.7 135/135 145 40 60 A++ A 13.9 171/169 145 40 60 ERST30C-**D A++ A 12.7 137/137 145 40 60 A++ A 13.9 173/173 145 40 60 ERST30C-**D A++ A 12.7 137/137 120 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-**D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-**D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-**D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-**D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-**D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 120 40 60	PUHZ-SW160YKA(-RS)															
PUHZ-SW200YKA(-BS) EHSE-**D A++ - 15.5 127 - 45 78 A++ - 17.3 147 - 45 78 PUHZ-SHW80V/YAA(-BS) EHST20C-***D A++ A+ A+ B-0 133/132 145 40 59 A++ A+ B-0 133/132 145 40 59 A++ A+ B-0 17.3 148 - 45 78 78 PUHZ-SHW80V/YAA(-BS) EHST20C-***D A++ A+ A+ B-0 133/132 145 B-0 133/132 145 B-0 14											_					
ERSE-***D A++ A++ A+ BO BENT20C-***D A++ A+ BENT30C-***D A++ BENT30C-***D A++ A+ BENT30C-***D A++ BENT30C-***D A++ A+ BENT30C-***D A++ BENT30C-***D A++ A+ BENT30C-***D A++ BENT30C-***D BENT3	PUHZ-SW200YKA(-BS)															
PUHZ-SHW80V/YAA(-BS) EHST20C-***D A++ A+ A+ 9.0 133/132 145 40 59 A++ A+ 9.6 169/167 145 40 59 ERST20C-***D A++ A+ 9.0 135/134 145 40 59 A++ A+ 9.6 172/172 145 40 59 EHST30C-***D A++ A+ A+ 9.0 135/134 120 40 59 A++ A+ 9.6 172/172 145 40 59 ERST30C-***D A++ A+ A+ 9.0 135/134 120 40 59 A++ A+ 9.6 169/167 120 40 59 ERST30C-***D A++ A+ A+ 9.0 135/134 120 40 59 A++ A+ 9.6 169/167 120 40 59 ERST30C-***D A++ A+ A+ 9.0 135/134 120 40 59 A++ A+ 9.6 169/167 120 40 59 ERST30C-***D A++ A+ - 9.0 135/134 - 40 59 A++ A+ - 9.6 172/172 120 40 59 PUHZ-SHW112V/YAA(-BS) EHST20C-***D A++ A+ A+ 12.7 135/135 145 40 60 A++ A+ 13.9 171/169 145 40 60 A++ A+ 13.9 171/169 120 40 60 ERST30C-***D A++ A+ A+ 12.7 135/135 120 40 60 A++ A+ A+ 13.9 171/169 120 40 60 A++ A+ A+ A+ A+ A+ A+ A+ A+											_			_		
ERST20C-***D A++ A+ 9.0 135/134 145 40 59 A++ A+ 9.6 172/172 145 40 59 EHST30C-***D A++ A 9.0 133/132 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C-***D A++ A 9.0 135/134 120 40 59 A++ A 9.6 172/172 120 40 59 EHSC-***D A++ - 9.0 135/134 - 40 59 A++ - 9.6 169/167 - 40 59 ERSC-***D A++ - 9.0 135/134 - 40 59 A++ - 9.6 172/172 - 40 59 EHSC-***D A++ A+ 12.7 135/135 145 40 60 A++ A+ 13.9 171/169 145 40 60 ERST20C-***D A++ A+ 12.7 135/135 120 40 60 A++ A+ 13.9 173/173 145 40 60 ERST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-***D A++ A 12.7 135/135 - 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-***D A++ A 12.7 135/135 - 40 60 A++ A 13.9 173/173 120 40 60	PUHZ-SHW80V/YAA(-BS)			Δ+												
EHST30C-***D A++ A 9.0 133/132 120 40 59 A++ A 9.6 169/167 120 40 59 ERST30C-***D A++ A 9.0 135/134 120 40 59 A++ A 9.6 172/172 120 40 59 EHSC-***D A++ - 9.0 133/132 - 40 59 A++ - 9.6 169/167 - 40 59 ERSC-***D A++ - 9.0 135/134 - 40 59 A++ - 9.6 172/172 - 40 59 EHST20C-***D A++ A+ 12.7 135/135 145 40 60 A++ A+ 13.9 171/169 145 40 60 ERST20C-***D A++ A+ 12.7 135/135 120 40 60 A++ A+ 13.9 173/173 145 40 60 EHST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-***D A++ A 12.7 137/137 120 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-***D A++ A 12.7 135/135 - 40 60 A++ A 13.9 173/173 120 40 60 EHSC-***D A++ A 12.7 135/135 - 40 60 A++ A 13.9 173/173 120 40 60																
ERST30C-***D A++ A 9.0 135/134 120 40 59 A++ A 9.6 172/172 120 40 59 EHSC-***D A++ - 9.0 133/132 - 40 59 A++ - 9.6 169/167 - 40 59 ERSC-***D A++ - 9.0 135/134 - 40 59 A++ - 9.6 172/172 - 40 59 PUHZ-SHW112V/YAA(-BS) EHST20C-***D A++ A+ 12.7 135/135 145 40 60 A++ A+ 13.9 171/169 145 40 60 ERST30C-***D A++ A 12.7 135/135 120 40 60 A++ A+ 13.9 171/169 120 40 60 ERST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-***D A++ A 12.7 135/135 - 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-***D A++ A 12.7 135/135 - 40 60 A++ A 13.9 173/173 120 40 60																
EHSC-***D A++ - 9.0 133/132 - 40 59 A++ - 9.6 169/167 - 40 59 ERSC-***D A++ - 9.0 135/134 - 40 59 A++ - 9.6 172/172 - 40 59 PUHZ-SHW112V/YAA(-BS) EHST20C-***D A++ A+ 12.7 135/135 145 40 60 A++ A+ 13.9 171/169 145 40 60 ERST20C-***D A++ A+ 12.7 135/137 145 40 60 A++ A+ 13.9 173/173 145 40 60 EHST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-***D A++ A 12.7 137/137 120 40 60 A++ A 13.9 173/173 120 40 60 ERST30C-***D A++ A 12.7 135/135 - 40 60 A++ A 13.9 173/173 120 40 60 EHSC-***D A++ - 12.7 135/135 - 40 60 A++ A 13.9 173/173 120 40 60													-			
ERSC-***D A++ - 9.0 135/134 - 40 59 A++ - 9.6 172/172 - 40 59 PUHZ-SHW112V/YAA(-BS) EHST20C-***D A++ A+ 12.7 135/135 145 40 60 A++ A+ 13.9 171/169 145 40 60 ERST20C-***D A++ A+ 12.7 135/137 145 40 60 A++ A+ 13.9 173/173 145 40 60 EHST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-***D A++ A 12.7 137/137 120 40 60 A++ A 13.9 173/173 120 40 60 EHSC-***D A++ - 12.7 135/135 - 40 60 A++ - 13.9 171/169 - 40 60																
PUHZ-SHW112V/YAA(-BS) EHST20C-***D A++ A+ 12.7 135/135 145 40 60 A++ A+ 13.9 171/169 145 40 60 ERST20C-***D A++ A+ 12.7 137/137 145 40 60 A++ A+ 13.9 173/173 145 40 60 EHST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-***D A++ A 12.7 137/137 120 40 60 A++ A 13.9 173/173 120 40 60 EHSC-***D A++ - 12.7 135/135 - 40 60 A++ - 13.9 171/169 - 40 60																
ERST20C-***D A++ A+ 12.7 137/137 145 40 60 A++ A+ 13.9 173/173 145 40 60 EHST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-***D A++ A 12.7 137/137 120 40 60 A++ A 13.9 171/169 120 40 60 EHSC-***D A++ - 12.7 135/135 - 40 60 A++ - 13.9 171/169 - 40 60	PUHZ-SHW112V/YAA(-BS)					-							-			
EHST30C-***D A++ A 12.7 135/135 120 40 60 A++ A 13.9 171/169 120 40 60 ERST30C-***D A++ A 12.7 137/137 120 40 60 A++ A 13.9 173/173 120 40 60 EHSC-***D A++ - 12.7 135/135 - 40 60 A++ - 13.9 171/169 - 40 60													-			
ERST30C-***D A++ A 12.7 137/137 120 40 60 A++ A 13.9 173/173 120 40 60 EHSC-***D A++ - 12.7 135/135 - 40 60 A++ - 13.9 171/169 - 40 60																
EHSC-***D A++ - 12.7 135/135 - 40 60 A++ - 13.9 171/169 - 40 60																
		ERSC-***D	A++	_	12.7	137/137	_	40	60	A++	_	13.9	171/109	_	40	60

All A⁺⁺ or Above!!

			For n	nedium-	temperatu	re applic	ation	T		For	low-ten	nperature a	applicatio	on	
Outdoor unit	Indoor unit	Seasonal space heating energy efficiency class	Water heating energy efficiency class	Rated heat output under average climate conditions	Seasonal space heating energy efficiency under average climate conditions	Water heating energy efficiency under average climate conditions	Sound power level Lwa indoor	Sound power level Lwa outdoor	Seasonal space heating energy efficiency class	Water heating energy efficiency class	Rated heat output under average climate conditions	Seasonal space heating energy efficiency under average climate conditions	Water heating energy efficiency under average climate conditions	Sound power level Lwa indoor	Sound power level LwA outdoor
				kW	%	%	dB	dB			kW	%	%	dB	dB
PUHZ-SHW140YHA	EHST20C-***D	A++	A+	15.8	127	138	40	70	A++	A+	17.0	163	138	40	70
	ERST20C-***D	A++	A+	15.8	128	138	40	70	A++	A+	17.0	165	138	40	70
	EHST30C-***D	A++	Α	15.8	127	118	40	70	A++	Α	17.0	163	118	40	70
	ERST30C-***D	A++	Α	15.8	128	118	40	70	A++	Α	17.0	165	118	40	70
	EHSC-***D	A++	-	15.8	127	-	40	70	A++	-	17.0	163	-	40	70
	ERSC-***D	A++	-	15.8	128	-	40	70	A++	-	17.0	165	-	40	70
PUHZ-SHW230YKA2	EHSE-***D	A++	-	23.0	127	-	45	75	A++	-	25.0	164	-	45	75
	ERSE-***D	A++	-	23.0	128	-	45	75	A++	-	25.0	165	-	45	75
PUZ-WM50VHA(-BS)	EHPT17X-***D(W)	A++	A+	5.0	129	120	40	61	A+++	A+	5.0	183	120	40	61
	ERPT17X-***D(W)	A++	A+	5.0	133	120	40	61	A+++	A+	5.0	190	120	40	61
	EHPT20X-***D(W)	A++	A+	5.0	129	135	40	61	A+++	A ⁺	5.0	183	135	40	61
	ERPT20X-***D(W)	A++	A+	5.0	133	135	40	61	A+++	A+	5.0	190	135	40	61
	EHPX-***D	A++	-	5.0	129	-	40	61	A+++	-	5.0	183	-	40	61
	ERPX-***D	A++	-	5.0	133	-	40	61	A+++	-	5.0	190	-	40	61
PUZ-WM60VAA(-BS)	EHPT17X-***D(W)	A++	A+	6.0	142	120	40	58	A+++	A+	6.0	190	120	40	58
	ERPT17X-***D(W)	A++	A+	6.0	145	120	40	58	A+++	A+	6.0	197	120	40	58
	EHPT20X-***D(W)	A++	A+	6.0	142	145	40	58	A+++	A ⁺	6.0	190	145	40	58
	ERPT20X-***D(W)	A++	A ⁺	6.0	145	145	40	58	A+++	A+	6.0	197	145	40	58
	EHPX-***D	A++	-	6.0	142	-	40	58	A+++	-	6.0	190	-	40	58
	ERPX-***D	A++	-	6.0	145	-	40	58	A+++	-	6.0	197	-	40	58
PUZ-WM85V/YAA(-BS)	EHPT17X-***D(W)	A++	A+	8.5	139/138	120	40	58	A+++	A+	8.5	193/190	120	40	58
	ERPT17X-***D(W)	A++	A+	8.5	141/141	120	40	58	A+++	A+	8.5	197/197	120	40	58
	EHPT20X-***D(W)	A++	A+	8.5	139/138	145	40	58	A+++	A ⁺	8.5	193/190	145	40	58
	ERPT20X-***D(W)	A++	A+	8.5	141/141	145	40	58	A+++	A+	8.5	197/197	145	40	58
	EHPT30X-***D(W)	A++	Α	8.5	139/138	120	40	58	A+++	Α	8.5	193/190	120	40	58
	ERPT30X-***D(W)	A++	Α	8.5	141/141	120	40	58	A+++	Α	8.5	197/197	120	40	58
	EHPX-***D	A++	-	8.5	139/138	-	40	58	A+++	-	8.5	193/190	-	40	58
	ERPX-***D	A++	-	8.5	141/141	-	40	58	A+++	-	8.5	197/197	-	40	58
PUZ-WM112V/YAA(-BS)	EHPT20X-***D(W)	A++	A+	10.0	134/133	148	40	60	A+++	A ⁺	10.0	191/189	148	40	60
	ERPT20X-***D(W)	A++	A+	10.0	136/136	148	40	60	A+++	A+	10.0	195/195	148	40	60
	EHPT30X-***D(W)	A++	Α	10.0	134/133	120	40	60	A+++	Α	10.0	191/189	120	40	60
	ERPT30X-***D(W)	A++	Α	10.0	136/136	120	40	60	A+++	Α	10.0	195/195	120	40	60
	EHPX-***D	A++	-	10.0	134/133	-	40	60	A+++	-	10.0	191/189	-	40	60
	ERPX-***D	A++	-	10.0	136/136	-	40	60	A+++	-	10.0	195/195	-	40	60
PUZ-HWM140V/YHA(-BS)	EHPT20X-***D(W)	A++	A+	14.0	132/131	130	40	67	A+++	A+	14.0	176/175	130	40	67
	ERPT20X-***D(W)	A++	A+	14.0	133/133	130	40	67	A+++	A ⁺	14.0	178/177	130	40	67
	EHPT30X-***D(W)	A++	Α	14.0	132/131	118	40	67	A+++	Α	14.0	176/175	118	40	67
	ERPT30X-***D(W)	A++	Α	14.0	133/133	118	40	67	A+++	Α	14.0	178/177	118	40	67
	EHPX-***D	A++	-	14.0	132/131	-	40	67	A+++	-	14.0	176/175	-	40	67
	ERPX-***D	A++	-	14.0	133/133	-	40	67	A+++	-	14.0	178/177	-	40	67
PUHZ-FRP71VHA2	EHST20C-***D	A+	A+	7.5	121	138	40	68	A++	A+	7.5	163	138	40	68
	EHSC-***D	A+	-	7.5	121	-	40	68	A++	-	7.5	163	-	40	68
PUMY-P112VKM5/YKM(E)4(-BS)	EHST20C-***D	A+	Α	11.2	121/121	106	40	69	A++	Α	11.2	168/168	106	40	69
	EHSC-***D	A+	-	11.2	121/121	-	40	69	A++	-	11.2	168/168	-	40	69
PUMY-P125VKM5/YKM(E)4(-BS)	EHST20C-***D	A ⁺	Α	11.2	121/121	106	40	69	A++	Α	11.2	168/168	106	40	69
	EHSC-***D	A ⁺	-	11.2	121/121	-	40	69	A++	-	11.2	168/168	-	40	69
PUMY-P140VKM5/YKM(E)4(-BS)	EHST20C-***D	A+	Α	11.2	121/121	106	40	69	A++	Α	11.2	168/168	106	40	69
	EHSC-***D	A+	-	11.2	121/121	-	40	69	A++	-	11.2	168/168	-	40	69

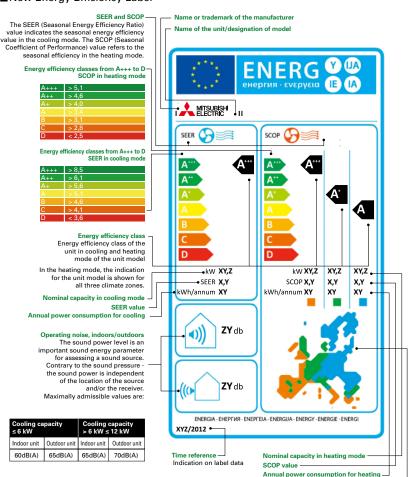
Note: E**T17/20*-***D use "Load profile L". E**T30*-***D use "Load profile XL".

NEW ECODESIGN DIRECTIVE

WHAT IS THE ErP DIRECTIVE?

The Ecodesign Directive for Energy-related Products (ErP Directive) establishes a framework to set mandatory standards for ErPs sold in the European Union (EU). The ErP directive introduces new energy-efficiency ratings across various product categories and affects how products such as computers, vacuum cleaners, boilers and even windows are classified in terms of environmental performance.

Regulations that apply to air conditioning systems of rated capacity up to 12kW came into effect as of January 1, 2013. Based the use of future-orientated technologies, Mitsubishi Electric is one step ahead of these changes, with our air conditioning systems already achieving compliance with these new regulations.


NEW ENERGY LABEL AND MEASUREMENTS

Under regulation 2011/626/EU, supplementing directive 2010/30/EU, air conditioning systems are newly classified into energy-efficiency classes on the basis of a new energy labelling system, which includes three new classes: A+, A++ and A+++.

Revisions to the measurement points and calculations of the seasonal energy efficiency ratio (SEER) and seasonal coefficient of performance (SCOP) has resulted in changes to how air conditioning systems are classified into energy-efficiency classes.

Specifically, for cooling mode, air conditioning systems must achieve at least class B. For heating mode, air conditioning systems must achieve at least a SCOP value of 3.8.

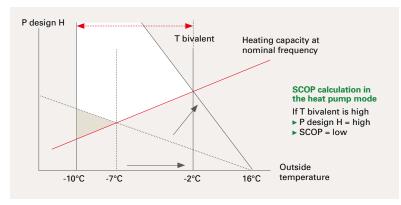
■New Energy Efficiency Label

For heating mode, the EU is divided into three climate zones for calculation and classification purposes. This aims at calculating the energy efficiency taking into consideration the actual regional ambient temperatures.

■Climate Zones for Heating Mode

Reference climate zones for calculating the SCOP
Since the climate conditions have a great influence on the operating behaviour in the heat pump mode, three climate zones have been stipulated for the EU: warm, moderate, cold. The measurement points are homogenous at 12°C, 7°C, 2°C, 2°C and -7°C.

	Temperat	ure conditions	
Partial	Outdoors		Indoors
oad	DB	WB	DB
-	-	-	20°C
00%	2°C	1°C	20°C
64%	7°C	6°C	20°C
29%	12°C	11°C	20°C


Moderate (Strasbourg)		
	Temperat	ure conditions	
Partial	Outdoors		Indoors
load	DB	WB	DB
88%	-7°C	-8°C	20°C
54%	2°C	1°C	20°C
35%	7°C	6°C	20°C
15%	12°C	11°C	20°C

old (Helsir	ıki)		
	Temperat	ture conditions	
Partial	Outdoors		Indoors
load	DB	WB	DB
61%	-7°C	−8°C	20°C
37%	2°C	1°C	20°C
24%	7°C	6°C	20°C
11%	12°C	11°C	20°C

SEER/SCOP

Air conditioning systems were previously assessed using the energy-efficiency rating (EER), which evaluated efficiency in cooling mode, and the coefficient of performance (COP), which defined the efficiency, or the ratio of consumed and output power, in heating mode. Under this system, assessments were not truly reflective of performance as they were based on a single measurement point, which led to manufacturers optimising products accordingly in order to achieve higher efficiency ratings. SEER and SCOP address this problem by including seasonal variation in the ratings via use of realistic measurement points. For cooling mode, measurements at outside temperatures of 20, 25, 30 and 35°C are incorporated and weighted in accordance with climate data for Strasbourg, which is used as a single reference point for the whole EU. For instance, for partial-load operation, which represents more than 90% of operation, there is a correspondingly high weighting for the efficiency classification. For heating mode, a comprehensive temperature profile for the whole EU was not possible, so the EU has been divided into three climate zones, north, central and south, and load profiles created. The same measurement points, at outside temperatures of 12, 7, 2 and -7°C, are used for all three zones.

■SCOP Calculation

Technical Terms with Respect to the SCOP

P design H: Corresponds to a heating load of 100%. The value depends on the selected bivalence point.

T design: Outside temperature which determines the P design H point. The latter is determined from the area conditions.

T bivalent: Corresponds to the lowest temperature at which full heating performance can be achieved with the heat pump (without additional heating). This point can be freely selected within the prescribed temperature ranges (T design - T bivalent).

SOUND PRESSURE LEVEL

Consumers will also receive more information on the noise levels emitted by split-system air conditioners to help them make their purchasing decision. Specifically, the sound power level of indoor and outdoor units is to be indicated in decibels as an objective parameter. Knowing the sound power makes it possible to calculate sound emissions while considering distance and radiation characteristics, which is beneficial because it allows the noise levels of different air conditioning systems to be compared regardless of the usage location and how the sound pressure is measured. This is an improvement on sound pressure values which are usually measured at an approximate distance of 1m where all modern split-system air conditioning systems tend to be very quiet at an average of 21 decibels.

■Sound Pressure vs Sound Power Level

Sound pressure level dB(A)

The sound pressure level is a sound field parameter which indicates the perceived operating noise of an indoor unit within a certain distance.

Sound power level dB(A)

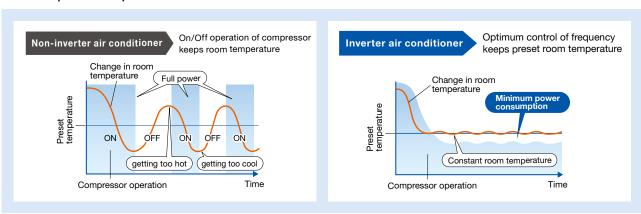
The sound power is an acoustic parameter which describes the source strength of a sound generator and is thus independent of the distance to the receiver location.

Inverter INVERTER TECHNOLOGIES

Mitsubishi Electric inverters ensure superior performance including the optimum control of operation frequency. As a result, optimum power is applied in all heating/cooling ranges and maximum comfort is achieved while consuming minimal energy. Fast, comfortable operation and amazingly low running cost — That's the Mitsubishi Electric promise.

INVERTERS — HOW THEY WORK

Inverters electronically control the electrical voltage, current and frequency of electrical devices such as the compressor motor in an air conditioner. They receive information from sensors monitoring operating conditions, and adjust the revolution speed of the compressor, which directly regulates air conditioner output. Optimum control of operation frequency results in eliminating the consumption of excessive electricity and providing the most comfortable room environment.


ECONOMIC OPERATION

Impressively low operating cost is a key advantage of inverter air conditioners. We've combined advanced inverter technologies with cutting-edge electronics and mechanical technologies to achieve a synergistic effect that enables improvements in heating/cooling performance efficiency. Better performance and lower energy consumption are the result.

TRUE COMFORT

Below is a simple comparison of air conditioner operation control with and without an inverter.

■ Inverter operation comparison

The compressors of air conditioners without an inverter start and stop repeatedly in order to maintain the preset room temperature. This repetitive on/off operation uses excessive electricity and compromises room comfort. The compressors of air conditioners equipped with an inverter run continuously; the inverter quickly optimizing the operating frequency according to changes in room temperature. This ensures energy-efficient operation and a more comfortable room.

Point 1 Quick & Powerful

Increasing the compressor motor speed by controlling the operation frequency ensures powerful output at start-up, brings the room temperature to the comfort zone faster than units not equipped with an inverter. Hot rooms are cooled, and cold rooms are heated faster and more efficiently.

Point 2 Room Temperature Maintained

The compressor motor operating frequency and the change of room temperature are monitored to calculate the most efficient waveform to maintain the room temperature in the comfort zone. This eliminates the large temperature swings common with non-inverter systems, and guarantees a pleasant, comfortable environment.

KEY TECHNOLOGIES

Our Rotary Compressor

Our rotary compressors use our original "Poki-Poki Motor" and "Heat Caulking Fixing Method" to realise downsizing and higher efficiency, and are designed to match various usage scenes in residential to commercial applications. Additionally, development of an innovative production method known as "Divisible Middle Plate" realises further size/weight reductions and increased capacity while also answering energy-efficiency needs.

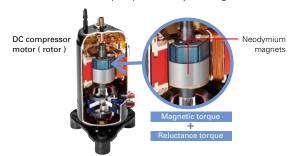
Our Scroll Compressor

Our scroll compressors are equipped with an advanced frame compliance mechanism that allows self-adjustment of the position of the orbiting scroll according to pressure load and the accuracy of the fixed scroll position. This minimises gas leakage in the scroll compression chamber, maintains cooling capacity and reduces power loss.

MORE ADVANTAGES WITH MITSUBISHI ELECTRIC

Joint Lap DC Motor

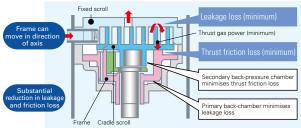
Mitsubishi Electric has developed a unique motor, called the "Poki-Poki Motor" in Japan, which is manufactured using a joint lapping technique. This innovative motor operates based on a highdensity, high-magnetic force, leading to extremely high efficiency and reliability.


Magnetic Flux Vector Sine Wave Drive

This drive device is actually a microprocessor that converts the compressor motor's electrical current waveform from a conventional waveform to a sine wave (180°conductance) to achieve higher efficiency by raising the motor winding utilisation ratio and reducing energy loss.

Reluctance DC Rotary Compressor

Powerful neodymium magnets are used in the rotor of the reluctance DC motor. More efficient operation is realised by strong magnetic and reluctance torques produced by the magnets.



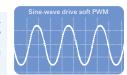
Highly Efficient DC Scroll Compressor

Higher efficiency has been achieved by adding a frame compliance mechanism to the DC scroll compressor. The mechanism allows movement in the axial direction of the frame supporting the cradle scroll, thereby greatly reducing leakage and friction loss, and ensuring extremely high efficiency at all speeds.

Heat Caulking Fixing Method

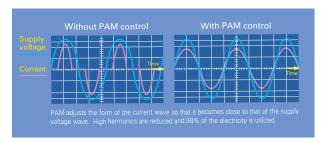
To fix internal parts in place, a "Heat Caulking Fixing Method" is used, replacing the former arc spot welding method. Distortion of internal parts is reduced, realising higher efficiency.

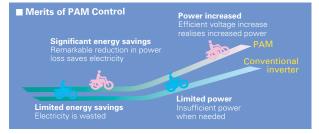
DC Fan Motor


A highly efficient DC motor drives the fan of the outdoor unit. Efficiency is much higher than an equivalent AC motor.

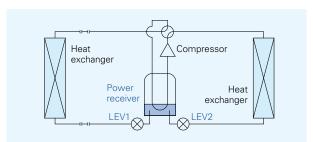
WW Vector-Wave Eco Inverter

This inverter monitors the varying compressor motor frequency and creates the most efficient waveform for the motor speed. As the result, operating efficiency in all speed ranges is improved, less power is used and annual electricity cost is reduced.

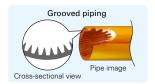

Smooth wave pattern


Inverter size has been reduced using insertmolding, where the circuit pattern is molded into the synthetic resin. To ensure quiet operation, soft PWM control is used to prevent the metallic whine associated with conventional inverters.

PAM PAM (Pulse Amplitude Modulation)

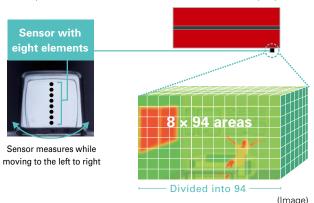

PAM is a technology that controls the current waveform so that it resembles the supply voltage wave, thereby reducing loss and realising more efficient use of electricity. Using PAM control, 98% of the input power supply is used effectively.

Power Receiver and Twin LEV Control


Mitsubishi Electric has developed a power receiver and twin linear expansion valves (LEVs) circuit that optimise compressor performance. This technology ensures optimum control in response to operating waveform and outdoor temperature. Operating efficiency has been enhanced by tailoring the system to the characteristics of R410A refrigerant.

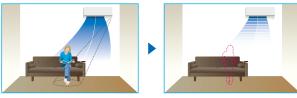
Grooved Piping

High-performance grooved piping is used in heat exchangers to increase the heat exchange area.



COMFORT

3D i-see Sensor


3D Fsee Sensor for M SERIES

The LN Series and FH Series are equipped with the 3D i-see Sensor, an infrared-ray sensor that measures the temperature at distant positions. While moving to the left and right, eight vertically arranged sensor elements analyze the room temperature in three dimensions. This detailed analysis makes it possible to judge where people are in the room, thus allowing creation of features such as "Indirect airflow," to avoid airflow hitting people directly, and "direct airflow" to deliver airflow to where people are.

No occupancy energy-saving mode

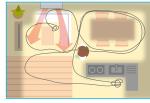
The sensors detect whether there are people in the room. When no-one is in the room, the unit automatically switches to energy-saving mode.

The "3D i-see Sensor" detects people's absence and the power consumption is automatically reduced approximately 10% after 10 minutes and 20% after 60 minutes.

Indirect Airflow

The indirect airflow setting can be used when the flow of air feels too strong or direct. For example, it can be used during cooling vaert airflow and prevent body temperature from becoming excessively cooled.

Even Airflow *LN Series only Normal swing mode


The airflow is distributed equally throughout the room, even to spaces where there is no human movement

Direct Airflow

This setting can be used to directly target airflow at people such as for immediate comfort when coming indoors on a hot (cold) day.

Even airflow mode

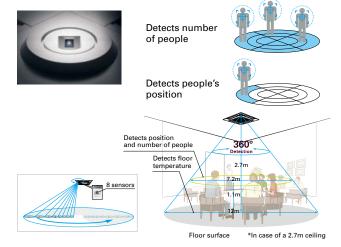
The 3D i-see sensor memorizes human movement and furniture positions, and efficiently distributes airflow.

No occupany Auto-OFF mode *LN Series only

The sensors detect whether or not there are people in the room. When there is no one in the room, the unit turns off automatically.

3D Fsee Sensor for S & P SERIES

Detects number of people


The 3D i-see Sensor detects the number of people in the room and adjusts the power accordingly. This makes automatic power-saving operation possible in places where the number of people changes frequently. Additionally, when the area is continuously unoccupied, the system switches to a more enhanced power-saving mode. Depending on the setting, it can also stop the operation.

Detects people's position

Once a person is detected, the angle of the vane is automatically adjusted. Each vane can be independently set to "Direct Airflow" or "Indirect Airflow" according to taste.

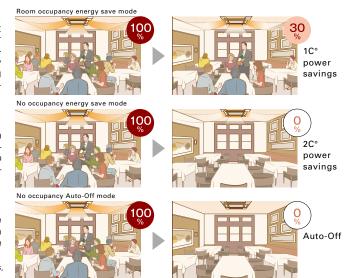
Highly accurate people detection

A total of eight sensors rotate a full 360° in 3-minute intervals. In addition to detecting human body temperature, our original algorithm also detects people's positions and the number of people.

Detects number of people

Room occupancy energy-saving mode

The 3D i-see Sensor detects the number of people in the room. It then calculates the occupancy rate based on the maximum number of people in the room up to that point in time in order to save airconditioning power. When the occupancy rate is approximately 30%, air-conditioning power equivalent to 1°C during both cooling and heating operation is saved. The temperature is controlled according to the number of people.


No occupancy energy-saving mode

When 3D i-see Sensor detects that no one is the room, the system is switched to a pre-set power-saving mode. If the room remains unoccupied for more than 60min, air-conditioning power equivalent to 2°C during both cooling and heating operation is saved. This contributes to preventing waste in terms of heating and cooling.

No occupancy Auto-OFF mode*

When the room remains unoccupied for a pre-set period of time, the air conditioner turns off automatically, thereby providing even greater power savings. The time until operation is stopped can be set in intervals of 10min, ranging from 60 to 180 min.

* When MA Remote Controller is used to control multiple refrigerant systems, "No occupancy Auto-OFF mode" cannot be used.

*PAR-40MAA is required for each setting

Detects people's position

Direct/Indirect settings*

The horizontal airflow spreads across the ceiling. When set to "Indirect Airflow" uncomfortable drafty-feeling is eliminated completely!

*PAR-40MAA or PAR-SL100A-E is required for each setting.

Seasonal airflow*

When cooling

Saves energy while keeping a comfortable effective temperature by automatically switching between ventilation and cooling. When a pre-set temperature is reached, the air conditioning unit switches to swing fan operation to maintain the effective temperature. This clever function contributes to keeping a comfortable coolness.

When heating

The air conditioning unit automatically switches between circulator and heating. Wasted heat that accumulates near the ceiling is reused via circulation. When a pre-set temperature is reached the air conditioner switches from heating to circulator and blows air in the horizontal direction. It pushes down the warm air that has gathered near the ceiling to people's height, thereby providing smart heating.

*PAR-40MAA is required for each setting

Area Temperature Monitor

The "3D i-see Sensor" monitors the whole room in sections and directs the airflow to areas of the room where the temperature does not match the temperature setting. (When cooling the room, if the middle of the room is detected to be hotter, more airflow is directed towards it.) This eliminates unnecessary heating /cooling and contributes to lower electricity costs.

Cooling mode

COMFORT

ENERGY-SAVING

Econo Cool Energy-Saving Feature

"Econo Cool" is an intelligent temperature control feature that adjusts the amount of air directed towards the body based on the air-outlet temperature. The setting temperature can be raised by as much as 2°C without any loss in comfort, thereby realising a 20% gain in energy efficiency. (Function only available during manual cooling operation.)

	Conventional	Econo Cool
Ambient temperature	35°C	35°C
Set temperature	25°C	27°C
Perceived temperature	30°C	29.3°C

Econo Cool Mode

A comfortable room environment is maintained even when setting the temperature 2°C higher than the conventional cooling mode.

Econo Cool on

Conventional cooling mode

Demand Function (Onsite Adjustment)

The demand function can be activated when the unit is equipped with a commercially available timer or an On/Off switch is added to the CNDM connector (option) on the control board of the outdoor unit. Energy consumption can be reduced up to 100% of the normal consumption according to the signal input from outside.

[Example: Power Inverter Series]

Limit energy consumption by changing the settings of SW7-1, SW2 and SW3 on the control board of the outdoor unit. The following settings are possible.

SW7-1	SW2 SW3		Energy consumption
	OFF		100%
ON	ON	OFF	75%
ON	ON	ON	50%
	OFF	ON	0% (Stop)

*PUHZ outdoor only

AIR QUALITY

Plasma Quad Plus

Plasma Quad Plus is a plasma-based filter system similar to Plasma Quad, but in addition to bacteria, viruses, allergens, and dust, it can also filter out microparticles such as PM2.5.

Plasma Quad

Plasma Quad attacks bacteria and viruses from inside the unit using a strong curtain-like electrical field and discharge of electric current across the whole inlet-air opening of the unit.

Dual Barrier Coating

A two-barrier coating which prevents hydrophobic and hydrophillic dirt from sticking to the inner surface and inner parts of the indoor unit

Fresh-air Intake

Indoor air quality is enhanced by the direct intake of fresh exterior air.

High-efficiency Filter

This high-performance filter has a much finer mesh compared to standard filters, and is capable of capturing minute particulates floating in the air that were not previously caught.

Air Purifying Filter

The filter has a large capture area and also generates antibacterial, antifungal, and deodorant effects.

Oil Mist Filter

The oil mist filter prevents oil mist from penetrating into the inner part of the air conditioner.

Long-life Filter

A special process for the entrapment surface improves the filtering effect, making the maintenance cycle longer than that of units equipped with conventional filters.

Filter Check Signal

Air conditioner operating time is monitored, and the user is notified when filter maintenance is necessary.

Silver-ionized Air Purifier Filter

Silver-ionized Air Purifier Filter made of non-woven fabric can capture tiny particles. Silver ions and enzymes contained in the filter effectively act on bacteria and allergens and neutralises them.

AIR DISTRIBUTION

Double Vane

Double vane separates the airflow in the different directions to deliver airflow not only across a wide area of the room, but also simultaneously to two people in different locations.

Horizontal Vane

The air outlet vane swings up and down so that the airflow is spread evenly throughout the room.

Vertical Vane

The air outlet fin swings from side to side so that the airflow reaches every part of the room.

📖 High Ceiling Mode

In the case of rooms with high ceilings, the outlet-air volume can be increased to ensure that air is circulated all the way to the floor.

Low Ceiling Mode

If the room has a low ceiling, the airflow volume can be reduced for less draft

₩Auto Fan Speed Mode

The airflow speed mode adjusts the fan speed of the indoor unit automatically according to the present room conditions.

Circulator Mode

After reaching the target temperature, heating mode will automatically switch to circulator mode, which makes the unit go into "fan-only" state and mixes warm air to eliminate uneven temperature in the room.

CONVENIENCE

CONVENIENCE

"i save" Mode

"i save" is a simplified setting function that recalls the preferred (preset) temperature by pressing a single button on the remote controller. Press the same button twice in repetition to immediately return to the previous temperature setting.

Using this function contributes to comfortable waste-free operation, realising the most suitable air conditioning settings and saving on power consumption when, for example, leaving the room or going to bed.

* Temperature can be preset to 10°C when heating in the "i-save" mode

Çi⋛Ö ACO

Auto Changeover

The air conditioner automatically switches between heating and cooling modes to maintain the desired temperature.

Low-temperature Cooling

Intelligent fan speed control in the outdoor unit ensures optimum performance even when the outside temperature is low.

Ampere Limit Adjustment

Dip switch settings can be used to adjust the maximum electrical current for operation. This function is highly recommended for managing energy costs.

*Maximum capacity is lowered with the use of this function.

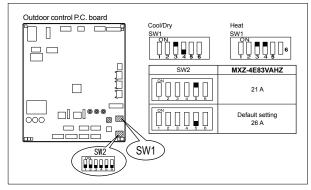
🗖 Operation Lock (Indoor unit)

To accommodate specific-use applications, cooling or heating operation can be specified using the wireless remote controller. A convenient option when a system needs to be configured for exclusive cooling or heating service.

Operation Lock (Outdoor unit)

To accommodate specific-use applications, cooling or heating operation can be specified when setting the control board of the outdoor unit. A convenient option when a system needs to be configured for exclusive cooling or heating service.

Auto Restart


Especially useful at the time of power outages, the unit turns back on automatically when power is restored.

10°C

10°C Heating

During heating operation, the temperature can be set in 1°C increments down to 10°C.

■ Dip Switch Setting (Board for MXZ-5E102)

Night Mode

When Night Mode is activated using the wireless remote controller, it will switch to the settings described below.

- The brightness of the operation indicator lamp will become dimmer.
- The beeping sound will be disabled.
- The outdoor operating noise will drop to 3dB lower than the rated specification operating noise.
- *The cooling/heating capacity may drop.

Low-noise Operation (Outdoor Unit)

System operation can be adjusted to prioritise less noise from the outdoor unit over air conditioning performance.

On/Off Operation Timer

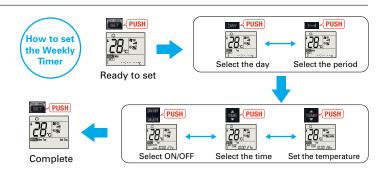
Use the remote controller to set the times of turning the air conditioner On/Off.

Built-in Weekly Timer Function

Easily set desired temperatures and operation ON/OFF times to match lifestyle patterns. Reduce wasted energy consumption by using the timer to prevent forgetting to turn off the unit and eliminate temperature setting adjustments.

■ Example Operation Pattern (Winter/Heating mode)

	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.
5.00	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C	ON 20°C
6:00			Automatically change	es to high-power opera	tion at wake-up time		
8:00 (0:00	OFF	OFF	OFF	OFF	OFF	ON 18°C	ON 18°C
12:00 14:00		Automatio	Midday is warmer, so the temperature is set lower				
15:00							
(8:00	ON 22°C	ON 22°C	ON 22°C	ON 22°C	ON 22°C	ON 22°C	ON 22°C
20:00 20:00		Automatically tur	Automatically raises ten match time when outsid	nperature setting to de-air temperature is low			
(during sleeping hours)	ON 18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C	ON 18°C
		Automa	atically lowers tempera	ture at bedtime for en	ergy-saving operation a	t night	


Settings

Pattern Settings: Input up to four settings for each day

Settings: •Start/Stop operation •Temperature setting *The operation mode cannot be set.

■ Easy set-up using dedicated buttons

- Start by pushing the "SET" button and follow the instructions to set the desired patterns. Once all of the desired patterns are input, point the top end of the remote controller at the indoor unit and push the "SET" button one more time. (Push the "SET" button only after inputting all of the desired patterns into the remote controller memory. Pushing the "CANCEL" button will end the set-up process without sending the operation patterns to the indoor unit).

 It takes a few seconds to transmit the Weekly Timer operation patterns to the indoor unit.
- Please continue to point the remote controller at the indoor unit until all data has been sent.

Back Light Remote Controller

Not only the indoor units, but the wireless remote controllers come in four colours as well. Each remote controller matches the indoor unit. Even the textures are the same.

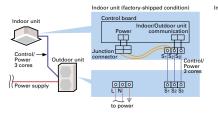
The setting can be easily checked in the dark.

INSTALLATION & MAINTENANCE

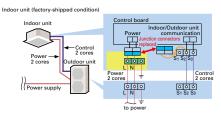
INSTALLATION

Cleaning-free Pipe Reuse

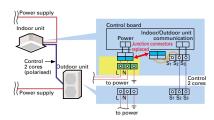
It is possible to reuse the same piping. It allows cleaning-free renewal of air conditioning systems that use R22 or R410 refrigerant.


Wiring Reuse of Existing Wiring

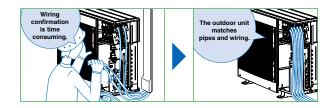
Wiring recycling problem solved! Compatible with other wiring connection methods*


The wiring method has been improved, making it possible to use methods different from that utilized for control and power supply. Units are compatible with the dual harness control line/power line method and the separate power supply method. Using a power supply terminal kit, wire can be efficiently reused at the time of system renewal regardless of the method the existing system uses.

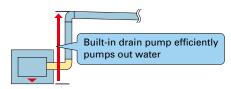
*Optional. Usage may be limited due to wiring type diameter.


Single Harness Control/Power Line Method (Current method)

Dual Harness Control Line/Power Line Method


Separate Power Supply Method

Wiring/Piping Correction Function*


The push of a single button is all that is required to confirm that piping and wiring are properly connected. Corrections are made automatically if a wiring error is detected, eliminating the need for complicated wiring confirmation work when expanding the number of rooms served

* This function cannot be used when the outdoor temperature is below 0°C. The correction process requires 10-20 minutes, and only works when the unit is set to the Cooling mode.

Drain Pump

A built-in drain pump enables drain piping to be raised.

Flare Connection

Flare connection to cooling pipe work is possible.

Pump Down Switch

Enables smooth and easy recovery of refrigerant. Simply press the "Pump Down" switch before moving or changing the unit.

Outdoor unit control circuit board

Pump Down Switch

stop refrigerant recovery operation automatically. (Valve in refrigerant circuit is opened/closed.)

MAINTENANCE

Self-Diagnostic Function (Check Code Display)

Check codes are displayed on the remote controller or the operation indicator to inform the user of malfunctions detected.

Failure Recall Function

Operation failures are recorded, allowing confirmation when needed.

SYSTEM CONTROL

SYSTEM CONTROL

PAR-40MAA/PAC-YT52CRA/PAC-CT01MAA

Units are compatible for use with the PAR-40MAA, PAC-YT52CRA or PAC-CT01MAA remote controller, which has a variety of management functions.

System Group Control

The same remote controller is capable of controlling the operational status of up to 16 refrigerant systems.

M-NET Connection

Units can be connected to MELANS system controllers (M-NET controllers) such as the AG-150A.

COMPO (Simultaneous Multi-unit Operation)

Multiple indoor units can be connected to a single outdoor unit. (Depending on the unit combination, connection of up to four units is possible; however, all indoor units must operate at the same settings.)

MXZ Connection

Connection to the MXZ multi-split outdoor unit is possible.

MELCloud (Wi-Fi interface)

MELCloud for fast, easy remote control and monitoring

MELCloud is a Cloud-based solution for controlling air-conditioner either locally or remotely by computer, tablet or smartphone via the Internet. Setting up and remotely operating via MELCloud is simple and straight forward. All you need is wireless computer connectivity in your home or the building where the air-conditioner is installed and an Internet connection on your mobile or fixed terminal. To set up the system, the router and the Wi-Fi interface must be paired, and this is done simply and quickly using the WPS button found on all mainstream routers.

You can control and check air-conditioner via MELCloud from virtually anywhere an Internet connection is available.

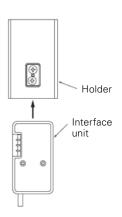
That means, thanks to MELCloud, you can use much more easily and conveniently.

Key control and monitoring features

- Turn system on/off
- See status of operating & adjust set point
- 6 Live weather feed from your location Schedule timer - Set 7 day weekly schedule Error status
- Energy Consumption Monitoring

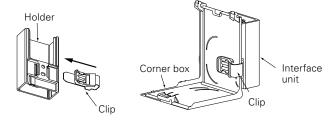
MELCloud uses the MAC-567IF-E interface

Connecting the Wi-Fi interface


The new Wi-Fi interface MAC-567IF-E can be mounted on the wall or on the outer side of the indoor unit. For LN Series, there is a built-in Wi-Fi interface inside the indoor unit.

When mounting on the wall

The interface can be mounted simply by affixing the holder to the wall on either side of the unit and inserting the interface unit into the holder.



^{*}When mounting on the right side of the unit

When mounting on the outer side of the unit

The interface can be mounted on the right side, left side, bottom right, or bottom left of the indoor unit. After inserting the clip into the holder, slip the clip over the edge of the corner box.

Bottom right

Left side

Bottom left

CONTROL TECHNOLOGIES

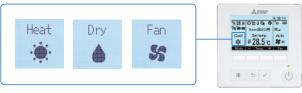
User-friendly Deluxe Remote Controller with Excellent Operability and Visibility

PAR-40MAA

Easy To Read & Easy To Use

Inverted display screen

The screen background color can be set to black to suit the atmosphere of the installation location.



Full Dot Liquid-crystal Display Adopted

Easier to read thanks to use of a full dot liquid-crystal display with backlight, and easier to use owing to adopting a menu format that has reduced the number of operating buttons.

Display Example [Operation Mode]

Full Dot LCD

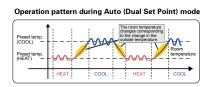
Multi-language Display

Control panel operation in fourteen different languages

Choose the desired language, among the following languages.

English	Spanish	Italian	Turkish
French	Greek	Portuguese	Swedish
German	Russian	Polish	Czech
Hangarian	Dutch		

Temperature Control



Two preset temperatures

When the operation mode is set to the Auto (Dual Set Point) mode, two preset temperatures (one each for cooling and heating) can be set. Depending on the room temperature, indoor unit will

automatically operate in either the COOL or HEAT mode and keep the room temperature within the preset range.

^{*}Please refer to the function list on pages 193-200 for the combination of the available units.

Energy-efficient Control

Operation Control Functions

Precise control of power consumption

The amount of power consumed in each time period is managed so that the demand value is not exceeded. The demand control function can be set to start and finish in 5-minute units.

Additionally, the level can be adjusted to 0, 50, 60, 70, 80 or 90% of maximum capacity, and up to 4 patterns can be set per day. Airconditioning operation is automatically controlled to ensure that electricity in excess of the contracted volume is not consumed.

■Setting pattern example

Start time	Finish time		Capacity savings
8:15	\rightarrow	12:00	80%
12:00	\rightarrow	13:00	50%
13:00	\rightarrow	17:00	90%
17:00	\rightarrow	21:00	50%

Prevents wasteful operation by automatically returning to the preset temperature after specified operating time

After adjusting the temperature for initial heating in winter or cooling on a hot summer day, it is easy to forget to return the temperature setting to its original value. The Auto-return function automatically resets the temperature back to the original setting after a specified period of time, thereby preventing overheating/overcooling. The Auto-return activation time can be set in 10-minute units, in a range between 30 and 120 minutes.

*Auto-return cannot be used when Temperature Range Restrictions is in use.

Auto-off Timer

Turns heating/cooling off automatically after preset time elapses

When using Auto-off Timer, even if one forgets to turn off the unit, operation stops automatically after the preset time elapses, thereby preventing wasteful operation. Auto-off Timer can be set in 10-minute units, in a range between 30 minutes and 4 hours. Eliminates all anxiety about forgetting to turn off the unit.

Recommended for Meeting room Changing room

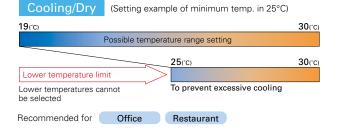
Night Setback

Keep desired room temperatures automatically

This function monitors the room temperature and automatically activates the heating mode when the temperature drops below the preset minimal temperature setting. It has the same function for cooling, automatically activating the cooling mode when the temperature rises above the preset maximum temperature setting.

Operation Lock

Fixed temperature setting promotes energy savings

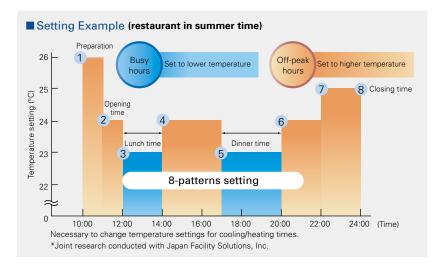

In addition to operation start/stop, the operation mode, temperature setting and airflow direction can be locked. Unwanted adjustment of temperature settings is prevented and an appropriate temperature is constantly maintained, leading to energy savings. This feature is also useful in preventing erroneous operation or tampering.

Recommended for Office School Public hall
Hospital Computer server facility

Temperature Range Restriction

Temperature Range Restriction prevents overheating/overcooling

Using a temperature that is 1°C lower/higher for heating/cooling results in a 10% reduction in power consumption.* Temperature Range Restriction limits the maximum and minimum temperature settings, contributing to the prevention of overheating/overcooling. *In-house calculations


Weekly Timer

Weekly Timer with Two Types of Settings

Weekly schedule timer can save two different settings which can be easily switched according to different seasons.

In addition, it offers eight different pattern setting per day. (on, off and temperature setting)

*Weekly Timer cannot be used when On/Off Timer is in use

CONTROL TECHNOLOGIES

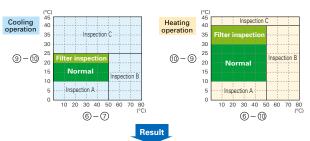
Installation/Maintenance Support Functions

Outdoor unit data accessed immediately, enabling fast maintenance (only PUZ/PUHZ type)

Using the Stable Operation Control (fixed frequency) of the Smooth Maintenance function, the operating status of the inverter can be checked easily via the screen on the remote controller.

■ Smooth Maintenance Function Operating Procedure

Display information (11 items)


	Compressor	6	OU TH4 temp. (°C)	
1	COMP. current (A)	OU TH6 temp. (°C)		
2	COMP. run time (Hr)	8 OU TH7 temp. (°C)		
3	COMP. ON/OFF (times)	Indoor Unit		
4	COMP. frequency (Hz)	9 IU air temp. (°C)		
	Outdoor Unit		IU HEX temp. (°C)	
5			IU filter operating time* (Hr)	

^{*}IU filter operating time is the time elapsed since filter was reset.

Inspection Guidelines

The computed temperature difference is plotted as in the graph below and operating status is determined.

		ltem
Cooling	(⑥ OU TH4 temp.) – (⑦ OU TH6 temp.)	
	T 1866	(⑨ IU air temp.) – (⑩ IU HEX temp.)
Haratin a	Temp. difference	(6 OU TH4 temp.) – (10 IU HEX temp.)
Heating		(1 IU HEX temp.) – (9 IU air temp.)

Normal	Normal operating status.		
Filter inspection	Filter may be blocked.*1		
Inspection A	Capacity is reduced. Detailed inspection is necessary.		
Inspection B	Refrigerant level is low.		
Inspection C	Filter or indoor unit heat exchanger is blocked.		

- \$1: Due to indoor and outdoor temperatures, "Filter inspection" may be displayed even if the filter is
- *1. Due to indoor and outdoor temperatures, "Filter inspection" may be displayed even if the filter is not blocked.
 * The above graphs are based on trial data. Results may vary depending on installation/temperature conditions.
 * Stable operation may not be possible under the following temperature conditions:

 a) In cooling mode when the outdoor induction temperature is over 40°C or the indoor induction temperature is below 23°C.
 b) In heating mode when the outdoor induction temperature is over 20°C or when the indoor induction temperature is over 25°C.
 o) If the above temperature conditions do not apply and stable operation is not achieved after 30 minutes has passed, please inspect the units.
 The operating status may change due to frost on the outdoor heat exchanger.

Manual Vane Angle Setting (4-way ceiling

Direction of vertical airflow for each vane can be set

Setting the vertical airflow direction for each individual vane can be performed simply via illustrated display. Seasonal settings such as switching between cooling and heating are easily changed as well.

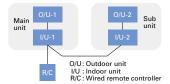
Easily raise/lower panels using the remote controller

Auto-descending panel operation is available as an option. Panels can be raise/lower using a button on the wired remote controller. Filter cleaning can be performed easily.

Three outdoor noise level setting

The outdoor noise level can be reduced on demand according to the surrounding environment. Select from three setting mode: standard mode (rated), silent mode and ultra-silent mode.

Password for initial settings


A password is required (default setting is "0000") for initial settings such as time and display language.

Rotation*, Back-up* and 2nd Stage Cut-in Functions* (PAR-40MAA)

(1) Rotation and Back-up Functions Function Outline

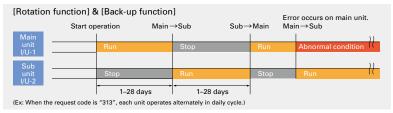
- Main and sub units take turns operating according to a rotation interval setting.
- If one unit malfunctions, the other unit automatically begins operation (Back-up function)
- *PUZ/PUHZ only

System Image

(2) 2nd Stage Cut-in Function

Function Outline

- Number of units operating is based on room temperature and predetermined settings.
- When room temperature rises above the desired setting, the standby unit starts (2-unit operation).
- When the room temperature falls 4°C below the predetermined setting, the standby unit stops (1unit operation).


System Constraint

• This function is only available for rotation operation and when the back-up function is in cooling mode.

*PUZ/PUHZ only

Operation Pattern

Operation Pattern

Flat

back

★ MEENRE

○●変

70mm (2-3/4 in)

120mm (4-23/32 in

Simple MA Remote Controller PAC-YT52CRA

Backlit LCD

Features a liquid-crystal display (LCD) with backlight for operation in dark conditions.

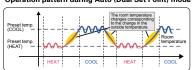
Flat Back

The slim and flat-back shape makes installation easier without requiring a hole in the wall. Thickness is 14.5mm or less.

Vane Angle Setting

The vane button has been added to allow users to change the airflow direction (ceiling-cassette and wall-mounted units).

Pressing the 📆 button will switch the vane direction.


Dual Set Point

Two preset temperatures

14.5mm (9/16 in)

When the operation mode is set to the Auto (Dual Set Point) mode, two preset temperatures (one each for cooling and heating) can be set. Depending on the room temperature, indoor unit will automatically operate in either the COOL or HEAT mode and keep the room temperature within the preset range.

Operation pattern during Auto (Dual Set Point) mode

- *Please refer to the function list on pages 193-200 for the combination of the available units.
- * The settable vane directions vary depending on the indoor unit model to be connected.
- * If the unit has no vane function, the vane direction cannot be set. In this case, the vane icon flashes when the 📆 button is pressed.

CONTROL TECHNOLOGIES

MA Touch Remote Controller
PAR-CT01MAA-SB
PAR-CT01MAA-PB

PAC-CT01MAA-SB

PAR-CT01MAA-PB

User-friendly Visible big size icons on the full color touch panel display.

Full color touch panel display

3.5 inch/HVGA Full Color LCD

Operation panels

Flexibility Customized display, color on parameter and background, editable parameter, logo image on the initial display.

Multiple color pattern

180 color patterns can be selected for control parameters or background on the display.

Control parameter customize

Users can customize the panel todisplay the selected parameters only.

• Control parameter customize

Simple operation panel is liked by users, especially in hotels. It is available to display only ON/OFF, set temp., fan speed.

Logo image customization

Logo image can be displayed on the initial screen.

Available in a wide variety of colors to suit the decor of any room.

Expandability Smartphone / tablet App is available for setting, customize, and control.

Bluetooth® low energy technology

Remote controller can communicate with smartphone or tablet device via Bluetooth Low Energy (BLE). Operation & Setting App are available on the App store.

- *The Bluetooth® word mark is trademark of Bluetooth SIG, Inc., USA.
- *Contact the sales company for information on "Bluetooth" function.

Convenient BLE transmission functions for installation contractors

Initial setup for the remote controller can be easily performed using BLE transmission via a smartphone.

Previous model

Previously, initial setup (selecting function parameters) was onlyavailable via the remote controller installed each room.

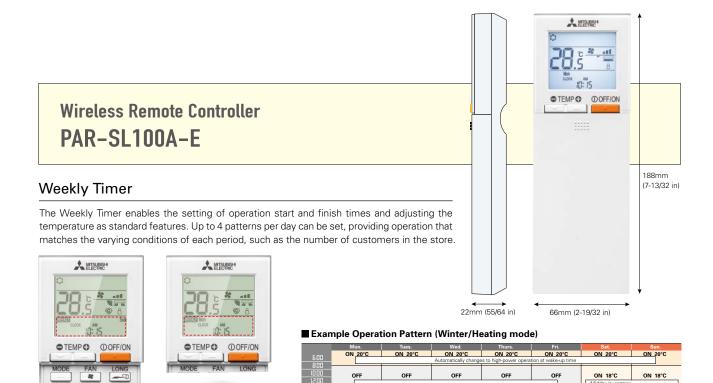
The initial setup (selecting function parameters) can now be performed in advance on a smartphone, with the settings transmitted to the remote controller by enabling BLE transmission upon entry to the room.

Convenient BLE transmission functions for guests

The remote controller has been further upgraded with hotels in mind, to allow smartphone connectivity and multilingual support.

Smartphone connectivity

For example, hotel guests can operate the air conditioner via their smartphones, without getting out of bed.



Multilingual support

The smartphone app can be displayed in the language that the guest's smartphone is set to.

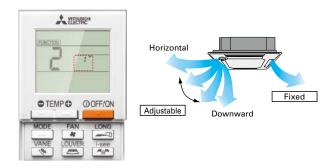
CONTROL TECHNOLOGIES

- *Weekly Timer cannot be used when On/Off Timer is in use.
- *Only for SLZ-KF25/35/50/60VA2, PLA-ZP/RP35/50/60/71/100/125/140EA

Backlight

Backlight function incorporated, making screen easy to read in the dark. Even in dimly lit rooms, the screen can be seen clearly for trouble-free remote controller operation.

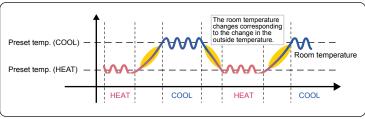
ON/OFF
WEEKLY @



Individual Vane Settings

The airflow directions of the four vanes can each be adjusted independently. Easily set the optimum airflow according to the room setting.

ON 20°C


Dual Set Point

When the operation mode is set to the Auto (Dual Set Point) mode, two preset temperatures (one each for cooling and heating) can be set. Depending on the room temperature, the indoor unit will automatically operate in either the COOL or HEAT mode and keep the room temperature within the preset range.

Operation pattern during Auto (Dual Set Point) mode

* Only available for compatible models.

Battery Replacement Sign

Previous wireless remote controllers were not easy to read, understand or use sometimes because the battery was low. Beginning with the PAR-SL100A-E, a battery charge indicator that shows the charge status is included in the LCD so it can be seen when the battery is low and needs to be changed.

3D i-see Sensor (Direct/Indirect Airflow)

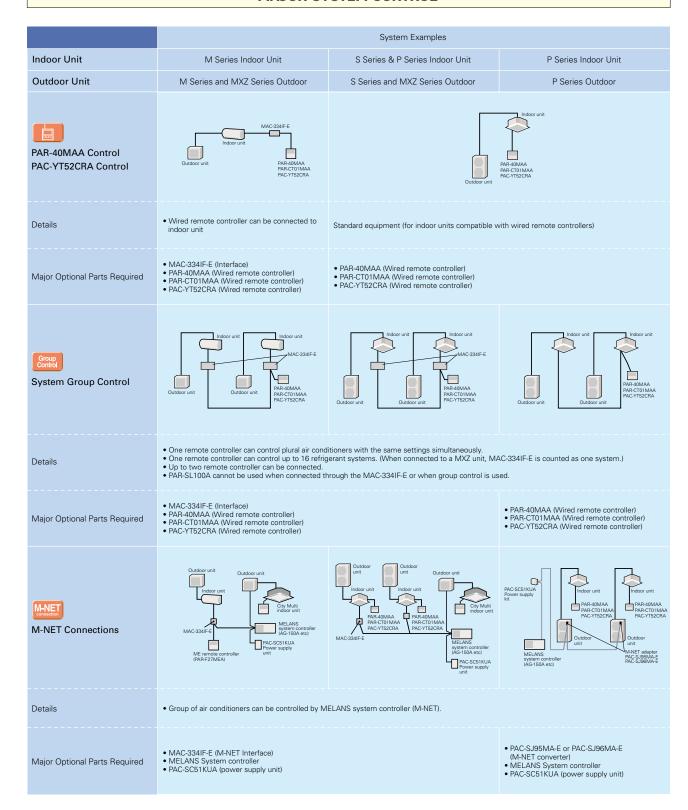
Pressing the i-see button enables direct or indirect setting of all vanes.

	Vane setting Direct Indirect				
Cooling	horizontal → swing	keep horizontal			
Heating	keep downward	downward → horizontal			

*Only available for models equipped with 3D i-see Sensor.

Basic Functions

Functions	Button	Liquid crystal
OFF / ON	① OFF/ON	
Preset temperature	● TEMP ●	88 .5
Mode	MODE	Cool Dry Heat Fan Auto Dual set point *Dual Set Point function not operational first use.
Fan speed	FAN	4-Speed Auto
Vane angle	VANE 🔪	5-step Swing Auto
3D i-see Sensor	i-see	Direct Indirect
Send sign		*
Battery replacement sign		
Function setting		[FUNCTION]
Test run		TEST
Self check		(CHECK)
Not available		N/A

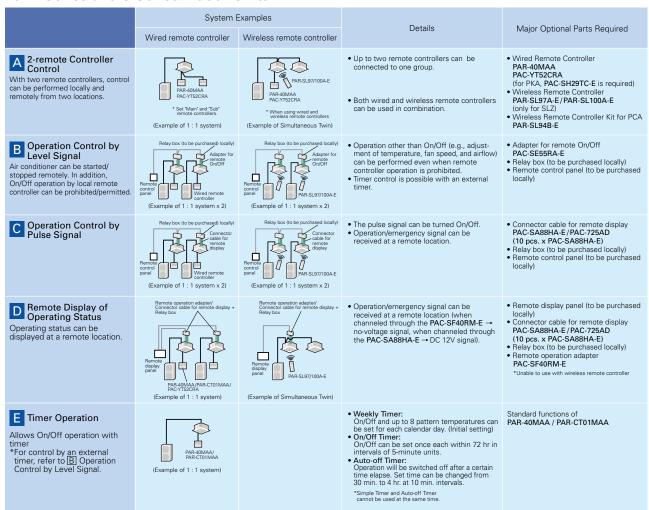

^{*}This remote controller is only compatible with the following models: SLZ-M15/25/35/50/60FA, PLFY-P15/20/25/32/40/50VFM-E1, PLA-ZM/RP35/50/60/71/100/125/140EA, PLFY-P20/25/32/40/50/63/80/100/125VEM-E

^{*}Functions available vary according to the model.

SYSTEM CONTROL

Versatile system controls can be realised using optional parts, relay circuits, control panels, etc.

MAJOR SYSTEM CONTROL



OTHERS

For M Series Indoor Units (New A-control Models Only)

		•		
	System Examples	Connection Details	Control Details	Major Optional Parts Required
Remote On/Off Operation • Air conditioner can be started/ stopped remotely. (① and ② can be used in combination)	MAC334IF-E Switch Indoor unit Switch Remote control section to be purchased locally!	Connect the interface to the air conditioner. Then connect the locally purchased remote controller to the terminal in the interface.	On/Off operation is possible from a remote location.	MAC-334IF-E (Interface) Parts for circuit such as relay box, lead wire, etc. (to be purchased locally)
2 Remote Display of Operation Status • The On/Off status of air conditioners can be confirmed remotely. (1 and 2 can be used in combination)	AAC-334IF-E Power supply Resustance LED Cutdoor unit Remote monitor section (to be purchased locality)	Connect the interface to the air conditioner. Then connect the locally purchased remote controller to the terminal in the interface.	The operation status (On/Off) or error signals can be monitored from a remote location.	MAC-334IF-E (Interface) Parts for circuit to be purchased locally (DC power source needed) External power source (12V DC) is required when using MAC-334IF-E.

For P Series and S Series Indoor Units

FUNCTION LIST (1)

Category	Icon						M SERIES				
	nation		Indoor unit	MSZ-LN18/25/35/ 50/60VG2 (W)(V)(R)(B)	MSZ-FT25/35/50VG	MSZ-AP15/20VG	MSZ-AP25/35/42/ 50/60/71VG	MSZ-EF18/22/25/35/ 42/50VG(W)(B)(S)	MSZ-BT20/25/35/50VG	MSZ-HR25/35/ 42/50/60/71VF	
	Combination	,	Outdoor unit	MUZ-LN	MUZ-FT	MU	Z-AP	MUZ-EF	MUZ-BT	MUZ-HR	
echnology	DC Inverter			•	•	•	•	•	•	•	
	Joint Lap DC Motor Reluctance DC Rotary Compressor		•	•	•	•	•	•	•		
	Heating Caulking (C	Cor	mpressor)	•	•	•	•	•	•	•	
	DC Fan Motor			•	•	•	•	•	•		$\overline{}$
	PAM (Pulse Amplitu	ude	e Modulation)	•	•	•	•	•	•	•	
	Power Receiver and	Tw	rin LEV Control								T
	Grooved Piping			•	•	•	•	•	•	•	
i-see Sensor	Felt Temperature Co	ontr	rol (3D i-see Sensor)	•							T
	AREA Temperature	e M	Ionitor	•							
Energy	Econo Cool Energy			•	•	•	•	•	•	•	┰
Saving	Standby Power Co			•	•	•	•	•	•		
Air Quality	Plasma Quad Plus			•							
	Plasma Quad			_							
	Dual Barrier Coatin	na		•							
	Silver-ionized Air Pu	_	fier Filter	Opt	•		Opt	•	Opt	Opt	
	Air Purifying Filter			Эрі	•		Орг	•	Орг	Орг	
Air	Double Vane			•							Н
Distribution				•	•	•	•	•	•		┢
	Horizontal Vane							•		•	┢
		Vertical Vane High Ceiling Mode		•	•	•	•				\vdash
	Auto Fan Speed Mode Circulator Mode									\vdash	
			•	•	•	•	•	•	•	⊢	
Convenience	On/off Operation Timer		•	•						⊢	
Convenience	On/off Operation Timer "i save" Mode		•	•	•	•	•	•	•	-	
				•	•	•	•	•	•	•	<u> </u>
	Auto Changeover			•	•	•	•	•	•	• *1	₽
	Auto Restart			•	•	•	•	•	•	•	_
	Low-temperature C	Coc	oling	•	•	•	•	•	•	•	╙
	10°C Heating			•	•	•	•		•	•	<u>∟</u>
	Low-noise Operation	on	(Outdoor Unit)								
	Night Mode	_		•	•	•	•		•		_
	Ampere Limit Adjus	stm	nent								\perp
	Operation Lock (Inc	do	or)	•	•	•	•		•	•	L
	Operation Lock (Ou										
	Built-in Weekly Tim	ner	Function	•	•	•	•	•			\perp
System Control	PAR-40MAA Contro	rol '	*3	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
	PAR-CT01MAA Co	ontr	rol *3	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
	PAC-YT52CRA Co	ntr	rol *3	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
	Centralised On/Off	f Co	ontrol *3	Opt	Opt	Opt	Opt	Opt	Opt	Opt	L
	System Group Con	ntro	ol *3	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
	M-NET Connection	n *3	3	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
	Wi-Fi Interface			•	Opt	Opt	Opt	Opt	Opt	Opt	
	Energy Consumption M	/loni	itoring through MELCloud								
Installation	Cleaning-free Pipe	Re	euse	•	•	•	•	•	•	•	
	Wiring/Piping Corre	ect	ion Function								
	Drain Pump										
	Flare Connection			•	•	•	•	•	•	•	П
Maintenance		ion	(Check Code Display)	•	•	•	•	•	•	•	
	Failure Recall Fund			•	•	•	•	•	•	•	

March House Marc					M si	ERIES				
0		MSZ-SF25/35/ 42/50VE3	MSZ-GF60/71VE2	MSZ-WN25/35VA			MSZ-HJ60/71VA	MFZ-KJ25/35/50VE2	MFZ-KT25/35/ 50/60VG	MLZ-KP25/35/50VF
	MUZ-FH	MUZ-SF	MUZ-GF	MUZ-WN	MUZ-DM	MUZ-HJ	MUZ-HJ	MUFZ-KJ	SUZ-M	SUZ-M
	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•
O	•	•		•	•	•	•	•	•	•
	•	•	•	•	•		•	•	•	•
	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•
Control Cont				•	•	•	•			•
Cot	•	•	•					•	•	
Cot										
	•									
	•							•	•	Opt
		•	•							
				•						
	•	•	•		•	•	•	•	•	•
				•	•	•	•			
Opt Opt <td>•</td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td>•</td>	•	•	•					•	•	•
Opt Opt <td></td>										
Opt Opt <td></td>										
Opt Opt <td></td>										
Opt Opt <td></td>										
Opt Opt <td></td>										
Opt Opt <td></td>										
Opt Opt <td>•</td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td>•</td>	•	•	•					•	•	•
Opt Opt <td>Opt</td> <td>Opt</td> <td>Opt</td> <td>Opt</td> <td>Opt</td> <td></td> <td></td> <td>Opt</td> <td>Opt</td> <td>Opt</td>	Opt	Opt	Opt	Opt	Opt			Opt	Opt	Opt
Opt Opt <td>Opt</td> <td>Opt</td> <td>Opt</td> <td>Opt</td> <td>Opt</td> <td></td> <td></td> <td>Opt</td> <td>Opt</td> <td>Opt</td>	Opt	Opt	Opt	Opt	Opt			Opt	Opt	Opt
Opt Opt <td>Opt</td> <td>Opt</td> <td>Opt</td> <td></td> <td>Opt</td> <td></td> <td></td> <td>Opt</td> <td>Opt</td> <td>Opt</td>	Opt	Opt	Opt		Opt			Opt	Opt	Opt
Opt Opt <td></td>										
Opt Opt <td></td>										
	Opt	Opt	Opt	Opt	Opt			Opt	Opt	Opt
	•	•	•	•	•	•	•	•	•	
	-									
	•	_	_	_	•					

The figures listed in the table are "only when combined with an outdoor unit with the appropriate capacity range".
 Opt: Separate parts must be purchased.

FUNCTION LIST (2)

Category	Icon			S sı	ERIES		
	Indoor unit		SLZ-M15/25	/35/50/60FA *4		SEZ-M25/35/	/50/60/71DA(L)
	Outdoor unit Outdoor unit	SUZ-M	SUZ-KA	PUZ-ZM	PUHZ-ZRP	SUZ-M	SUZ-KA
echnology	DC Inverter	•	•	•	•	•	•
	Joint Lap DC Motor	•	•			•	•
	Magnetic Flux Vector Sine Wave Drive			•	•		
	Reluctance DC Rotary Compressor	•	•			•	•
	Highly Efficient DC Scroll Compressor			•	•		
	Heating Caulking (Compressor)	•	•			•	•
	DC Fan Motor	•	•	•	•	•	•
	Vector-Wave Eco Inverter			•	•		
	PAM (Pulse Amplitude Modulation)	•	•	•	•	•	•
	Power Receiver and Twin LEV Control			•	•		
	Grooved Piping	•	•	•	•	•	•
i-see Sensor	Felt Temperature Control (3D i-see Sensor)					•	
1-300 3011301		Opt	Opt	Opt	Opt		
Enorgy Coulo	AREA Temperature Monitor	Opt	Opt	Opt	Opt		
Energy Saving	Demand Function						
Attractive	Pure White	•	•	•	•		
	Auto Vane	•	•	•	•		
Air Quality	Fresh-air Intake	•	•	•	•		
	High-efficiency Filter						
	Oil Mist Filter						
	Long-life Filter	•	•	•	•		
	Filter Check Signal	•	•	•	•		
Air	Horizontal Vane	•	•	•	•		
Distribution	Vertical Vane						
	High Ceiling Mode	•	•	•	•		
	Low Ceiling Mode						
	Auto Fan Speed Mode	•	•	•	•	•	•
Convenience	On/off Operation Timer	•	•	•	•	•	•
	Auto Changeover	•	•	•	•	•	•
	Auto Restart	•	•	•	•	•	•
	Low-temperature Cooling	•	•	•	•	•	•
,	Low-noise Operation (Outdoor Unit)			•	•		
	Ampere Limit Adjustment			60-140V	60-140V		
	Operation Lock			00-1404	00-1407		
	Rotation, Back-up and 2nd Stage Cut-in Functions						
	Dual Set Point *3			•	•		
Custo			6 :	0.1	0		
System Control	PAR-40MAA Control *1	Opt	Opt	Opt	Opt	Opt	Opt
	PAR-CT01MAA Control *1	Opt	Opt	Opt	Opt	Opt	Opt
	PAC-YT52CRA Control *1	Opt	Opt	Opt	Opt	Opt	Opt
	Centraliesd On/Off Control *1	Opt	Opt	Opt	Opt	Opt	Opt
	System Group Control *1	Opt	Opt	Opt	Opt	Opt	Opt
	M-NET Connection *1	Opt	Opt			Opt	Opt
	COMPO *2			71-140	71-140		
	Energy Consumption Monitoring through MELCloud						
Installation	Cleaning-free Pipe Reuse	•	•	•	•	•	•
	Reuse of Existing Wiring						
	Wiring/Piping Correction Function						
	Drain Pump	•	•	•	•	Opt	Opt
	Pump Down Switch						
	Flare Connection	•	•	•	•	•	•
Maintenance	Self-Diagnosis Function (Check Code Display)	•	•	•	•	•	•
	Failure Recall Function	•	•	•	•	•	•

¹¹ Please refer to "System Control" on pages for details.

12 Please refer to page 57 for details.

13 This function is only available with PAR-40MAA, PAC-YT52CRA, PAR-SL100A-E.

14 SLZ-M15 can be connected with R32 MXZ only.

If a numerical figure is listed, the feature is only available with the outdoor unit of that capacity.
 Opt: Optional parts must be purchased.

Category	Icon							P se	RIES				
		_	Indoor unit	DIA ZMOS	/E0/60/71/100/	125/14054			DI A MOE	/50/60/71/100/1	12E/140EA		
		natio	Indoor unit	PLA-ZM35	5/50/60/71/100/	125/140EA			PLA-M35	/50/60// 1/100/1	125/14UEA		
		Combination	Outdoor unit	PUHZ-SHW	PUZ-ZM	PUHZ-ZRP	PUHZ-SHW	PUZ-ZM	PUHZ-ZRP	SUZ-M	SUZ-KA	PUZ-M	PUHZ-P
Technology	DC Inverter			•	•	•	•	•	•	•	•	•	•
	Joint Lap DC M	lotor			35-71	35-71		35-71	35-71	•	•	100	100
	Magnetic Flux Ve	ector S	Sine Wave Drive	•	•	•	•	•	•			•	•
	Reluctance DC F	Rotary	Compressor		35-71	35-71		35-71	35-71	•	•	100-140	100-140
	Highly Efficient D	C Sc	roll Compressor	•	100-250	100-250	•	100-250	100-250			200-250	200-250
	Heating Caulking	ng (C	Compressor)		35-71	35-71		35-71	35-71	•	•	100	100
	DC Fan Motor			•	•	•	•	•	•	•	•	•	•
	Vector-Wave E	co In	verter	•	•	•	•	•	•			•	•
	PAM (Pulse Am	nplitu	de Modulation)	•	35-140	35-140	•	35-140	35-140	•	•	100-140V	100-140V
	Power Receiver	and T	win LEV Control	•	35-250	35-140	•	35-250	35-140			100-250	100-140
	Grooved Piping	9		•	•	•	•	•	•	•	•	•	•
i-see Sensor	Felt Temperature (Contro	ol (3D i-see Sensor)	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
	AREA Tempera	ature	Monitor	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
Energy Savir	Demand Functi	ion		Opt	Opt	Opt	Opt	Opt	Opt			Opt	Opt
Attractive	Pure White			•	•	•	•	•	•	•	•	•	•
	Auto Vane			•	•	•	•	•	•	•	•	•	•
Air Quality	Fresh-air Intake	Э		•	•	•	•	•	•	•	•	•	•
	High-efficiency	Filter	r	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
	Oil Mist Filter												
	Long-life Filter			•	•	•	•	•	•	•	•	•	•
	Filter Check Sig	gnal		•	•	•	•	•	•	•	•	•	•
Air Distribution	Horizontal Vane	е		•	•	•	•	•	•	•	•	•	•
Distribution	Vertical Vane												
	High Ceiling Mo	ode		•	•	•	•	•	•	•	•	•	•
	Low Ceiling Mo	ode		•	•	•	•	•	•	•	•	•	•
	Auto Fan Spee	d Mo	ode	•	•	•	•	•	•	•	•	•	•
Convenience	On/off Operation	n Tin	mer	•	•	•	•	•	•	•	•	•	•
	Auto Changeov	/er		•	•	•	•	•	•	•	•	•	•
	Auto Restart			•	•	•	•	•	•	•	•	•	•
	Low-temperatu	re Co	ooling	•	•	•	•	•	•	•	•	•	•
ons	Low-noise Ope	ratior	n (Outdoor Unit)	•	00.140)/	00.440)/	•	00.440)/	00.440)/			•	•
Functions	Ampere Limit A	djust	tment	112/140	60-140V 200/250	60-140V 200/250	112/140	60-140V 200/250	60-140V 200/250				
ш.	Operation Lock												
	Rotation, Back-up ar	nd 2nd	Stage Cut-in Functions	•	•	•	•	•	•			•	•
i	Dual Set Point				•	•		•	•			•	•
System Control	PAR-40MAA C			Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
	PAR-CT01MAA			Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
	PAC-YT52CRA			Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
	Centraliesd On			Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
	System Group			•	•	•	•	•	•	Opt	Opt	•	•
	M-NET Connec	ction '	*1	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
	COMPO *2			•	71-250	71-250	•	71-250	71-250			•	•
			oring through MELCloud										
Installation	Cleaning-free F			•	•	•	•	•	•	•	•	•	•
	Reuse of Existi			Opt	Opt	Opt	Opt	Opt	Opt			Opt	Opt
	Wiring/Piping C	Correc	ction Function										
	Drain Pump			● *3	● *3	● *3	● *3	● *3	● *3	● *3	● *3	● *3	● *3
	Pump Down Sv			•	•	•	•	•	•			•	•
 	Flare Connection			•	•	•	•	•	•	•	•	•	•
Maintenance			Check Code Display)	•	•	•	•	•	•	•	•	•	•
	Failure Recall F		tion	•	•	•	•	•	•	•	•	•	

¹¹ Please refer to "System Control" on pages for details.

12 Please refer to page 64 for details.

13 PEAD-M JAL are not equipped with a drain pump.

14 This function is only available with PAR-40MAA, PAC-YT52CRA, PAR-SL100A-E.

If a numerical figure is listed, the feature is only available with the outdoor unit of that capacity.
 Opt: Optional parts must be purchased.

FUNCTION LIST (2)

Category	Icon								P SERIES							
		Indoor unit		PEAD	-M35/50/60/7	1/100/125/14	0JA(L)		PEAD- M35/50/60/ 71/JA(L)		PEA-M2	200/250LA		PKA-M35	5/50LA(L)	
	Combination	Outdoor unit	PUHZ -SHW	PUZ -ZM	PUHZ -ZRP	PUZ -M	PUHZ -P	SUZ -M	SUZ -KA	PUZ -ZM	PUHZ -ZRP	PUZ -M	PUHZ -P	PUZ -ZM	PUHZ -ZRP	
Technology	DC Inverter		•	•	•	•	•	•	•	•	•	•	•	•	•	
	Joint Lap DC Motor			35-71	35-71	100	100	•	•					35-71	35-71	
	Magnetic Flux Vector S	Sine Wave Drive	•	•	•	•	•			•	•	•	•	•	•	
	Reluctance DC Rotary	Compressor		35-71	35-71	100-140	100-140	•	•					35-71	35-71	
	Highly Efficient DC Sci	roll Compressor	•	100-250	100-250	200/250	200/250			•	•	•	•	100-200	100-200	
	Heating Caulking (C	ompressor)		35-71	35-71	100	100	•	•					35-71	35-71	
	DC Fan Motor		•	•	•	•	•	•	•	•	•	•	•	•	•	
	Vector-Wave Eco In	verter	•	•	•	•	•			•	•	•	•	•	•	
	PAM (Pulse Amplitud	de Modulation)	•	35-140	35-140	100-140V	100-140V	•	•					35-140	35-140	
	Power Receiver and To	· ·	•	35-250	35-140	100-250	100-140			•		•		35-200	35-140	
	Grooved Piping		•	•	•	•	•	•	•	•	•	•	•	•	•	
i-see Sensor	-	I (3D i-see Sensor)														
	AREA Temperature															
Energy Savin	g Demand Function		Opt	Opt	Opt	Opt	Opt			Opt	Opt	Opt	Opt	Opt	Opt	
Attractive	Pure White		Эрг	Орг	Орг	Эрг	Opi			Opt	Орг	Эрг	Spi	Орг	Орг	
	Auto Vane													•	•	
Air Quality	Fresh-air Intake															
	High-efficiency Filter	,														
	Oil Mist Filter															
	Long-life Filter		•	•	•	•	•	•	•	Ont	Ont	Ont	Ont			
	Filter Check Signal		•	•	•	•	•	•	•	Opt	Opt	Opt	Opt	Opt	Opt	
Air	Horizontal Vane													Орг	Орг	
Distribution	Vertical Vane															
	High Ceiling Mode															
	Low Ceiling Mode															
	Auto Fan Speed Mo	do	•	•	•	•	•	•	•	•	•	•	•	•	•	
Convenience	On/off Operation Tim		•	•	•	•	•	•	•	•	•	•	•	•	•	
Convenience	Auto Changeover	ici	•	•	•	•	•	•	•	•	•	•		•	•	
	Auto Changeover Auto Restart		•	•	•	•	•	•	•	•	•	•	•	•	•	
	Low-temperature Co	ooling	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Low-noise Operation		•	•	•	•	•			•	•	•	•	•	•	
tions				60-140V	60-140V						•	•		71-140V	71-140V	
Functions	Ampere Limit Adjust Operation Lock	mont	112/140	200/250	200/250						-			200	200	
	-	Stage Cut in Eurotions	•													
	Rotation, Back-up and 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2nd 2	Stage Cut-III Functions		•	•	•	•			•		•		•	•	
Custom	PAR-40MAA Control	1*1	0.1	•	•	•	0.1	0.1	0.1	•	•		•			
System Control	PAR-CT01MAA Con		Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
			Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
	PAC-YT52CRA Con Centraliesd On/Off C		Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
	System Group Contr		Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt		Opt		Opt	Opt	-
	M-NET Connection		•	•	•	•	•	Opt	Opt	•	•	•	•	Opt	Opt	
		1	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	
	COMPO *2	de albertal MELOLET	•	71-250	71-250	•	•			•		•		71-200	71-200	
	Energy Consumption Monito	• •														
Installation				•	•	•	•	•	•	•	•	•	•	•	•	
	Reuse of Existing W		Opt	Opt	Opt	Opt	Opt							Opt	Opt	
		ction Function	_		_		_	_	_							
	Wiring/Piping Correction Fun Drain Pump Pump Down Switch		• *3	•*3	•*3	•*3	•*3	●*3	• *3	Opt	Opt	Opt	Opt	Opt	Opt	
	Pump Down Switch		•	•	•	•	•	_		•	•	•	•	•	•	
	Flare Connection		•	•	•	•	•	•	•	•	•	•	•	•	•	
Maintenance	Self-Diagnosis Function (C Failure Recall Funct		•	•	•	•	•	•	•	•	•	•	•	•	•	
		ion				•					•					1

¹ Please refer to "System Control" on pages for details.
2 Please refer to page 64 for details.
3 PEAD-M JAL are not equipped with a drain pump.
4 This function is only available with PAR-40MAA, PAC-YT52CRA, PAR-SL100A-E.

									P SERIES							
PKA-M35	5/50LA(L)		PKA	-M60/71/100k	(A(L)			PC/		71/100/125/14	10KA		PCA-N	M71HA	RP7	SA- 1/100/ 140KA
PUZ -M	PUHZ -P	PUHZ -SHW	PUZ -ZM	PUHZ -ZRP	PUZ -M	PUHZ -P	PUZ -ZM	PUHZ -ZRP	PUZ -M	PUHZ -P	SUZ -M	SUZ -KA	PUZ -ZM	PUHZ -ZRP	PUHZ -ZRP	PUHZ -P
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
100	100		60/71	60/71	100	100	35-71	35-71	100	100	•	•	71	71	71	100
•	•	•	•	•	•	•	•	•	•	•			•	•	•	•
•	100-140		60/71	60/71	100-140	100-140	35-71	35-71	100-140	100-140	•	•	71	71	71	100-140
	200	•	100-250	100-250	200/250	200/250	100-250	100-250	200/250	200/250			100-250	100-250	100-250	200/250
			60/71	60/71	100	100	35-71	35-71	100	100	•	•	71	71	71	100
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•			•	•	•	•
100V-140V	100V-140V	•	60-140	60-140	100-140V	100-140V	35-140	35-140	100-140V	100-140V	•	•	71-140	71-140	71-140	100-140V
100-140	100-140	•	60-250	60-140	100-250	100-140	35-250	35-140	100-250	100-140			71-250	71-140	71-140	100-140
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt			Opt	Opt	Opt	Opt
•	•	•	•	•	•	•	•	•	•	•	•	•			•	•
•	•	•	•	•	•	•	•	•	•	•	•	•				
							•	•	•	•	•	•	•	•		
							Opt	Opt	Opt	Opt	Opt	Opt				
													•	•		
							•	•	•	•	•	•			•	•
Opt	Opt	Opt	Opt	Opt	Opt	Opt	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•				
															•	•
							•	•	•	•	•	•				
							•	•	•	•	•	•				
•	•	•	•	•	•	•	•	•	•	•	•	•			•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	CO 140V	60-140V	•	•	CO 140V	CO 140V	•	•			•	71 1401/	71 140\/	•
		112/140	60-140V 200/250	200/250			60-140V 200/250	60-140V 200/250						71-140V 200/250	71-140V 200/250	
•	•	•	•	•	•	•	•	•	•	•			•	•		
•	•		•	•	•	•	•	•	•	•						
Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt		
Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt		
Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt		
Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
Opt	Opt	Opt	Opt	Opt	Opt	Opt	•	•	•	•	Opt	Opt	•	•	Opt	Opt
Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt
•	•	•	71-250	71-250	•	•	71-250	71-250	•	•			71-250	71-250	71-250	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	,		Opt	Opt	Opt	Opt
-1		-4,							75.				75.			26.
Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt	Opt				
•	•	•	Φ.	•	•	Φ.	Φ.	•	•	•	- 61	- 61	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
-	_		_		_			_	_							that capacity.

If a numerical figure is listed, the feature is only available with the outdoor unit of that capacity.
 Opt: Optional parts must be purchased.

FUNCTION LIST (2)

Category	Icon							MXZ s	SERIES							
	Series			Std			Lo-	std	Н	l2i	Lo	-std		Std		
				MXZ-VA(2)			MX	Z-VA	MX	Z-VA	MX	Z-VF		MXZ-VF3		
	Outdoor unit	2D	3E	4E	5E	6D	2DM	3DM	2E	4E	2HA	ЗНА	2F	3F	4F	
echnology	DC Inverter	•	•	•	•	•	•	•	•	•	•	•	•	•	•	${}^{-}$
	Joiint Lap DC Motor	•	•	•	•		•	•	•		•	•	•	•	•	
	Magnetic Flux Vector Sine Wave Drive															1
	Reluctance DC Rotary Comperssor			83	•	•										
	Highly Efficient DC Scroll Compressor			00												┢
																\vdash
	Heating Caulking (Compressor)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	+
	DC Fan Motor	•	•	•	•	•	•	•	•	•	•	•	•	•	•	⊢
	Vector-Wave Eco Inverter															_
	PAM (Pulse Amplitude Modulation)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Щ
	Power Receiver and Twin LEV Control		•	72				•				•		•	•	
	Grooved Piping	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
i-see Sensor	Felt Temperature Control (3D i-see)															
	AREA Temperature Monitor															
Energy Saving	Demand Function															
Attractive	Pure White															Т
	Auto Vane															
Air Quality	Fresh-air Intake															T
	High-efficiency Filter															\vdash
	Oil Mist Filter															+
	Filter Check Signal															\vdash
A.i.,																₩
Air Distribution	Horizontal Vane															╄
	Vertical vane															▙
	High Ceiling Mode															
	Auto Fan Speed Mode															
Convenience	On/off Operation Timer															
	Auto Changeover	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Auto Restart	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Low- temperature Cooling	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Т
	10°C Heating	● *1	• *1	• *1	• *1	• *1			• *1	• *1			• *1	• *1	• *1	T
	Low-noise Operation (Outdoor)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Night Mode															†
	Ampere Linit Adjustment			83	•	•			•	•						
2	Operation Lock (Indoor)			0.5												┢
																┢
2	Operation Lock (Outdoor)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	₩
	Built-in Weekly Timer Function															_
	Rotation, Back-up abd 2nd Stage Cut-in Functions															
	Dual Set Point															┺
System Control	PAR-40MAA Control	Opt	Opt	Opt	Opt	Opt										
	PAR-CT01MAA Cotrol	Opt	Opt	Opt	Opt	Opt										
	PAC-YT52CRA Control	Opt	Opt	Opt	Opt	Opt										
	Centralised On/off Control	Opt	Opt	Opt	Opt	Opt	П									
	System Group Control	Opt	Opt	Opt	Opt	Opt										
	M-NET Connection			Opt (83)	Opt	Opt			Opt	Opt						T
	Wi-Fi Interface															
	Energy/Consumption Monitaring trouth MEL Cloud															т
	СОМРО															\vdash
	MXZ Connection	•*2	•*2	* 2	•*2	•*2	• *2	• *2	* 2	* 2	•*2	•*2	•*2	•*2	* 2	┢
Installation		2	- 2	2	- 2	- 2	- 2	- 2	- 2	2						╆
Installation	Cleaning-free Pipe Reuse										● *3	•*3	●*3	●*3	• *3	
	Reuse of Existing Wiring															\vdash
	Wiring/Piping Correction Function	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Drain Pump															\perp
	Pump Down Switch		•	•	•	•		•		•		•		•	•	
	Flare Connection	•	•	•	•	•	•	•	•	•	•	•	•	•	•	\perp
Maintenance	Self-Diagnosis Function (Check Code Display)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Failure Recall Function	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Т

^{*1} When multiple indoor units connected to an MXZ outdoor unit are running at the same time, simultaneous cooling and heating is not possible.
*2 For the possible connectivity of MXZ outdoor units and indoor units, please refer to the list on pages 113 for details.
*3 Please refer to "System Control" on pages for details.

		MXZ SERIES		
	Std		Hyper H	leating
	MXZ-VF		MXZ-	
4F	5F	6F	2F	4F
71	•	01		-11
			•	
•	•		•	
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
• *1	• *1	• *1	● *1	• *1
•	•	•	•	•
•	•	•	•	•
Opt	Opt	Opt	Opt	Opt
Opt	Opt	Opt	Opt	Opt
Opt	Opt	Opt	Opt	Opt
Opt	Opt	Opt	Opt	Opt
Opt		Opt		
Орг	Opt	Opt	Opt	Opt
• *2	• *2	* 2	• *2	• *2
●*3	* 3	●*3	* 3	* 3
•	•	•	•	•
The figures	listed in the	table are "o	nly when co	mhined with

<sup>The figures listed in the table are "only when combined with an outdoor unit with the appropriate capacity range".
Opt: Separate parts must be purchased.</sup>

Major Optional Parts

Part Name	Description	Part Name	Description
Deodorising Filter Captures small foul-smelling substances in the air.	Deodorising liller	Drain Pump Pumps drain water to a point higher than that where the unit is installed.	*for ceiling-suspended units
Air-cleaning Filter Removes fine dust particles from the air by means of static electricity.	Air-cleaning filter	Decorative Cover To be attached to the upper section of ceiling- suspended models for professional kitchen use. Helps prevent dust accumulation.	Decorative cover
Silver-ionized Air Purifier Filter Captures the bacteria, pollen and other allergens in the air and neutralises them.	Silver-ionized Air Purifier Filter	MA & Contact Terminal Interface Interface for connecting with the PAR-40MAA remote controller and PAC-YT52CRA, and to relay operation signals.	MA & contact terminal interface
Oil Mist Filter Element Filter element (12 pieces) that blocks the oil mist for ceiling-suspended models used in professional kitchens.	Filter frame Filter frame Oil mist filter	System Control Interface Interface to connect with M-NET controllers.	System control interface
High-efficiency Filter Element Element for high-efficiency filter. Removes fine dust particles from the air.	Plup (for directing airflow) High-efficiency fifter element *For 4-way cassette units (PLA)	Wi-Fi Interface Interface enabling users to control air conditioners and check operating status via devices such as personal computers, tablets and smartphones.	WiFi interface Indoor unit Smartphone
3D i-see Sensor Corner Panel for SLZ Corner panel holding the 3D i-see Sensor.	I-see Sensor corner panel	Connector Cable This product is an adaptor which inputs the incoming signals from an open/close switch to the air conditioner and outputs the on/off signals from the air conditioner to the back-up heater.	Switch Indoor unit
3D i-see Sensor Corner Panel for PLA Corner panel holding the 3D i-see Sensor.	i-see Sensor comer panel	Power Supply Terminal Kit Terminal bed to change the power supply from outdoor power supply to separate indoor/ outdoor power supplies.	
Shutter Plate Plate for blocking an air outlet of the 4-way cassette (PLA) indoor unit.	Shutter Plate	Wired Remote Controller Advanced deluxe remote controller with full-dot liquid-crystal display and backlight. Equipped with convenient functions like night-setback.	TOV (6)
Multi-functional Casement Casement for fresh-air intake and attaching the high-efficiency filter element (optional).	Indoor unit body Multi-functional casement	MA Touch Remote Controller Remote controller with the full color touch display. Smartphone/Tublet App is available for setting, customize and control.	
Fresh-air Intake Duct Flange Flange attachment for adding a duct to take in fresh air from outside.	*For 4-way cassette units (PLA)	Simple Wired Remote Controller Remote controller with liquid-crystal display, and backlight function for operation in dark location.	
Space Panel Decorative cover for the installation when the ceiling height is low.	Space Panel	Remote Controller Terminal Block Kit for PKA The terminal block is used as a relay to wire an indoor unit and to two remote controllers or to wire a remote controller and multiple indoor units in order to perform group control.	

Part Name	Description
Wireless Remote Controller Signal Sender Handheld unit for sending operation signals to the indoor unit.	Handheld unit
Wireless Remote Controller Signal Receiver Receives operation signals from the wireless remote controller handheld unit.	Signal receiver
Wireless Remote Controller Kit (Sender & Receiver) Remote controller handheld unit (signal sender) and receiver (signal receiver) for ceiling-suspended units.	Signal receiver
Control Holder Holder for storing the remote controller.	Control holder
Remote Sensor Sensor to detect the room temperature at remote positions.	Remote sensor
Remote On/Off Adapter Connector for receiving signals from the local system to control the on/off function.	Remote on/off adapter
Remote Operation Adapter Adapter to display the operation status and control on/off function from a distance.	Remote operation adapter
Connector Cable for Remote Display Connector used to display the operation status and control on/off function from a distance.	Connector cable for remote display Brown Red Orange Yellow Green
Distribution Pipe Branch pipe for P Series simultaneous multisystem use, or to connect two branch boxes for PUMY.	Indoor unit Indoor
Joint Pipe Part for connecting refrigerant pipes of different diametres.	Joint pipe Onsite pipe Indoor unit Outdoor unit Insulator
Liquid Refrigerant Dryer Removes water and minute particles from refrigerant pipes.	
Branch Box Outer Cover Casement for branch boxes.	Complete view Branch box outer cover

Part Name	Description
Air Discharge Guide Changes the direction of air being exhausted from the outdoor unit.	
Air Protection Guide Protects the outdoor unit from the wind.	
Drain Socket A set of caps to cover unnecessary holes at the bottom of the outdoor unit, and a socket to guide drain water to the local drain pipe.	Cap
Centralised Drain Pan Catches drain water generated by the outdoor unit.	Outdoor unit Centralised drain pan Base (local construction)
M-NET Converter Used to connect P Series A-control models to M-NET controllers.	Crosp remote controller Crosp remote Controller Converter Conve
Control/Service Tool Monitoring tool to display operation and self-diagnosis data.	Control/service tool
Step Interface Interface for adjusting the capacity of inverter- equipped outdoor units.	Case interior Installed in case
High-static Fan Motor Static pressure enhanced up to +30pa.	

Optional Parts List <Indoor>

	Option			Fil	ter	l		0-6:	System	MA &					Wired Rem	ote Controlle	er	
			Silver- Air Puri	ionized fier Filte		Deodo Fil		Softdry cloth	Control	Contract Terminal Interface	Wi-Fi Interface		nector ble		Controlle	r		troller
ndoor Unit		MAC- 2360 FT	MAC- 2370 FT	MAC- 2380 FT	MAC- 2390 FT	MAC- 3000 FT-E	MAC- 3010 FT-E	MAC- 1001 CL-E	MAC- 334IF-E	MAC- 397IF-E	MAC- 567IF-E	MAC- 1702RA-E	MAC- 1710RA-E	PAR- 40MAA	PAR- CT01MAA	PAC- YT52CRA	MAC- 1200RC-E	MAC- 1300RC
Wall -	MSZ-LN18VG2(W)(V)(R)(B)				•		•	•	•	•		•	•	*1	*1	1 1		• *2
mounted	MSZ-LN25VG2(W)(V)(R)(B)				•		•	•	•	•		•	•	1 1	●*1	6 *1		0.5
	MSZ-LN35VG2(W)(V)(R)(B)				•		•	•	•	•		•	•	1 1	0 *1	0 11		0.5
	MSZ-LN50VG2(W)(V)(R)(B)				•		•	•	•	•		•	•	●*1	●*1	●*1		0.5
	MSZ-LN60VG2(W)(V)(R)(B)				•		•	•	•	•	6 *3	•	•	●*1 ●*1	●*1 ●*1	0°1		0*2
	MSZ-FT25VG MSZ-FT35VG		•						•	•	9,3	•	•	011	*1	-11		•
	MSZ-FT50VG		•						•	•	-3	•	•	-11	-11	01		•
	MSZ-AP15VG		_								-3			-11	*1	*1		•
	MSZ-AP20VG								•	•	-3	•	•	-11	*1	-11		•
	MSZ-AP25VG		•							•	•	•	•	-11	-11	0 "1		•
	MSZ-AP35VG								•	•	•	•	•	11	*1	0"1		•
	MSZ-AP42VG		•						•	•	•	•	•	1 1	*1	*1		
	MSZ-AP50VG		•						•	•	•	•	•	1 1	0 "1	0 "1		
	MSZ-AP60VG								•	•		•	•	1 1	• *1	1 1		•
	MSZ-AP71VG	•							•	•	•	•	•	● *1	*1	6 *1		•
	MSZ-EF18VG(W)(B)(S)		•					•	•	•	●*3	•	•	● *1	●*1	1 1		•
	MSZ-EF22VG(W)(B)(S)		•						•	•	●,3	•		1 1	• *1	1 1		•
	MSZ-EF25VG(W)(B)(S)		•					•	•	•	●*3	•	•	● *1	1	6 *1		•
	MSZ-EF35VG(W)(B)(S)		•					•	•	•	●*3	•	•	● *1	1	6 *1		•
	MSZ-EF42VG(W)(B)(S)										6.3			0 *1	● *1	0 *1		•
	MSZ-EF50VG(W)(B)(S)		•						•	•	●,3	•	•	● *1	●*1	●"1		
	MSZ-BT20VG								•		● *3	•		1 1	1 1	1 1		
	MSZ-BT25VG		•								● *3	•		11	• *1	11		
	MSZ-BT35VG								•	•	●*3	•	•	●*1	1 1	1 1		
	MSZ-BT50VG								•	•	*3	•	•	1 1	*1	1 1		
	MSZ-HR25VF MSZ-HR35VF		•						•	•	•	•	•	•	•	•	•	
	MSZ-HR42VF		•						•	•	•	•	•	•	•	•	•	_
	MSZ-HR50VF		•							•								
	MSZ-HR60VF		•						•	•		•		11	*1	911		_
	MSZ-HR71VF		•									•	•	-11	-11	01		_
	MSY-TP35VF								•	•	•	•		•	•			
	MSY-TP50VF										•		•					
	MSZ-FH25VE2			•		•			•	•	•	•	•	0 "1	1 1	0 11		
	MSZ-FH35VE2													0 *1	6 *1	0 *1		
	MSZ-FH50VE2			•		•			•	•	•	•	•	0 °1	● *1	● *1		
	MSZ-SF15VA								•	•	•			1 1	● *1	1 1		
	MSZ-SF20VA													-1	● *1	0 *1		•
	MSZ-SF25VE3		•						•	•	•			1 1	• "1	0 11		
	MSZ-SF35VE3		•						•	•	•			1 1	1 1	1 1		•
	MSZ-SF42VE3								•	•				1 1	• *1	1		
	MSZ-SF50VE3		•						•	•	•			● 11	1 1	1 1		•
	MSZ-GF60VE2								•	•	•			●*1	*1	1 1		•
	MSZ-GF71VE2	•							•	•	•			11	*1	1 1		
	MSZ-WN25VA	-	•						•	•	•	•	•	•	•	•		
	MSZ-WN35VA		•						•	•	•	•	•	•	0 11	0 11	-	•
	MSZ-DM25VA		•						•	•	•	•	•	@*1 @*1	0 *1	*1 *1	•	
	MSZ-DM35VA MSZ-HJ25VA	<u> </u>	•					-	-	-	•	•	•	<u> </u>	9.	<u> </u>	•	
	MSZ-HJ35VA																•	
	MSZ-HJ50VA		•									•	•				•	
	MSZ-HJ60VA		•					 				•						\vdash
	MSZ-HJ71VA		•									•						
Floor-	MFZ-KJ25VE2		•						•	•	•	•	•	1 1	• *1	0 *1		•
standing	MFZ-KJ35VE2								•	•	•	•	•	1 1	1	0 *1		0
	MFZ-KJ50VE2		•						•					1 1	• *1	0 *1		•
	MFZ-KT25VG		•						•	•	•	•	•	1 1	1	1 1		•
	MFZ-KT35VG		•						•	•	•	•	•	1 1	1	1 1		•
	MFZ-KT50VG								•	•		•		1 1	• *1	1		•
	MFZ-KT60VG		•						•	•	•	•	•	1 1	• "1	● *1		•
1-way	MLZ-KP25VF		•						•	•	•	•	•	1 1	• *1	● *1		
cassette	MLZ-KP35VF								•			•		1 1	-1	• *1		•
	MLZ-KP50VF	1	•	I	1		1	1	•	•	•	•	•	0 11	● *1	● *1		(

^{*1} MAC-394IF-E or MAC-397IF-E is required. When using MAC-397IF-E with PAR-40MAA, brightness needs to be set as low.
*2 Available only for LN18/25/35/50/60VG2W.
*3 Outside attachment only.

Optional Parts List <Indoor>

	Option			_			Filter	_						i-see	0,	_ Multi-	Fre	sh-air								
		Oil Mist Filter Element	Life	F	High-eft Filter E	fficiency Element	t l		ı	Filter Bo	OX		Cor	ensor orner anel	Shutter Plate	functional	Intake	e Duct ange	Space Panel			Dra	ain Pur	mp		
ndoor Unit		PAC- SG38 KF-E		PAC- SH59 KF-E	SH88	SH89	PAC- SH90 KF-E	KE92	KE93	KE94	KE95	KE250	PAC- SF1 ME-E	SE1	SJ37	SJ41	PAC- SH65 OF-E	SF28	PAC- SJ65 AS-E	SH94	1 SK01	SJ92	SJ93	PAC- SJ94 DM-E	PAC- KE07 DM-E	KE06
4-way	SLZ-M15FA												•													
cassette	SLZ-M25FA			Γ ,			'						•												匚	
	SLZ-M35FA																									
	SLZ-M50FA	'		ſ.,			<u> </u>	Ē.		'	ഥ'		•												匚	
	SLZ-M60FA	'		Ι.,			'سلّــــــــــــــــــــــــــــــــــــ	Ĺ.,	<u></u>	<u> </u>	'ـــــــــــــــــــــــــــــــــــــ			<u></u>		'	'			\perp	\perp	\perp	$oxed{oxed}$		Ī.	L
Ceiling -	SEZ-M25DA(L)																									
conceald	SEZ-M35DA(L)	<u> </u>		Γ.		<u> </u>	'ـــــــــــــــــــــــــــــــــــــ	Ĺ.,	<u></u>	<u> </u>	'ـــــــــــــــــــــــــــــــــــــ		L'	Ĺ.		Г'	Γ_'	Ī		\perp	\perp	\perp	\Box	<u>[</u>		
	SEZ-M50DA(L)	'					'ــــــــــــــــــــــــــــــــــــ	Ĺ.		'	<u> </u>		'								\perp	\Box		'		
	SEZ-M60DA(L)																									
	SEZ-M71DA(L)	'		Γ.			'ست	Ĺ.,	Ĺ	<u> </u>	'ـــــــــــــــــــــــــــــــــــــ		L'	Ĺ		'	'			\perp	\perp	\perp	$oxed{oxed}$	اللل		L
4-way	PLA-ZM35EA	'		•		'	<u>"</u>	Ι		<u> </u>	<u> </u>		L'	•	•	•	•		•			\perp	\Box	'	Ī.	
Cassette	PLA-ZM50EA	'					<u> </u>	Ĺ'	<u></u>	<u> </u>	<u> </u>		<u> </u>	•		•	•	Ĺ'				<u> </u>			Ĺ	
	PLA-ZM60EA			•										•	•	•	•		•							
	PLA-ZM71EA	<u> </u>	<u> </u>			Щ'	<u> </u>	Щ.		'ـــــــــــــــــــــــــــــــــــــ	Щ'	Ц_	<u> </u>		•	•	•	1	•		\perp			\perp	Щ.	<u> </u>
	PLA-ZM100EA	<u> </u>	<u> </u>		<u> </u>	Щ'	<u> </u>	<u> </u>		Щ'	└		<u> </u>		•	•	•		•					╙		<u> </u>
	PLA-ZM125EA	4		•										•	•	•	•	4	•							
	PLA-ZM140EA	<u> </u>	 	•	<u> </u>	↓'	'ـــــــــــــــــــــــــــــــــــــ	 '		<u> </u> '	↓ '	↓	↓'	•		•	•	1			↓	\perp	↓	\perp	Ь—	↓
	PLA-M35EA	<u> </u>		•		<u> </u>	<u> </u>	<u> </u>		└	<u> </u>		<u> </u>	•	0	•	•						\perp	\perp	_	
	PLA-M50EA	4		•			4	4						•	•	•	•		•							
	PLA-M60EA	<u> </u>	<u> </u>			Щ'	<u>'</u> ــــــــــــــــــــــــــــــــــــ	Щ.		<u> </u>	Щ'	Ц_	<u> </u>		•	•	•	1	•		\perp		⊥	\perp	Щ.	⊥
	PLA-M71EA	'			<u> </u>		'ــــــــــــــــــــــــــــــــــ	Ĺ'	<u></u>	<u> </u>	'ــــــــــــــــــــــــــــــــــ		<u> </u>	•		•	•	Ĺ'				<u> </u>	<u> </u>		Ĺ	
	PLA-M100EA			•										•	•	•	•		•							
	PLA-M125EA	<u> </u>	<u> </u>	•	<u> </u>	↓'	'ـــــــــــــــــــــــــــــــــــــ	 '		<u> </u>	↓ '	<u> </u>	↓'	•		•	•	1	•			\perp		\perp	Ь_	ــــــ
	PLA-M140EA	<u> </u>		•		<u> </u>	<u> </u>	Щ'		└	<u> </u>		<u> </u>	•	•	•	•		•			Щ.	Щ.	\perp	Щ.	_
Ceiling -	PEAD-M35JA(L)	4						•																		
conceald	PEAD-M50JA(L)	<u> </u>	 	<u> </u>	<u> </u>	Щ'	<u>'</u>	•	1	<u> </u>	↓ '	<u> </u>	ļ'		<u> </u> '	 '	 '	1			₩.	↓	↓	\perp	₩.	ـــــ
	PEAD-M60JA(L)	<u> </u>	 '	<u> </u>	<u> </u>	L'	 '	Щ.	0	<u> </u>	<u></u> '	Щ	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1			_	ـــــ	ـــــ	₩.	Щ.	_
	PEAD-M71JA(L)	4					4	4	•		4							4								
	PEAD-M100JA(L)	<u> </u>	<u> </u>	 '	 	↓'	₩'		4	•	↓ —'	↓	<u> </u>	4	<u> </u>	<u> </u>	<u> </u>			—		↓	↓	Щ'	—	
	PEAD-M125JA(L)	<u> </u>	<u> </u>	 '	<u> </u>	Щ'	↓ '	<u> </u>	4	•	└	↓	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>		↓			↓	₩	└	Ь	_
	PEAD-M140JA(L)	4		4			4—"	4	4	4	•			4	4	4	4	4		4					-	
	PEA-M200LA	<u> </u>	•	 '	<u> </u>	↓'	↓ '	_	—	↓ ′	— '	•	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	1	↓	₩	 	↓	₩	Щ'	₩	
	PEA-M250LA	<u></u> '	•	 '	<u> </u>	<u> </u>	——'			<u></u> '	—'	•	<u> </u>		<u></u> '	<u> </u>	<u></u>					—	—	<u> </u>	_	•
Wall -	PKA-M35LA(L)	4	4	4——"	4	4	4	4—/	4—	4——'	4	_	4	4	4—"	4'	4	4—/	4/	4/	•	4	_	\perp	\leftarrow	_
mounted	PKA-M50LA(L)	 '		↓ —'	 '	<u> </u>	↓ —_′	 '	+	 '	+—'	—	 '	+	<u>+</u> '	↓ —_'	 '			+	•	₩.	₩	₩'	₩	₩
	PKA-M60KA(L)	 '	<u> </u>	 '		<u> </u>	─	 '	\leftarrow	<u></u> '	—'	—	<u></u> '	+-	<u></u> '	 '	<u></u> '		₩.	•	₩	₩.	₩	$\perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp$	₩	_
	PKA-M71KA(L)	4—'	4—	4—'	4—	 '	 '	+'	4—	 '	←–′	-	+	4—	4—'	 '		+	4	•	4	4	-	\vdash	\vdash	₩
0 111	PKA-M100KA(L)	 '		+'	-	↓ —'	+—′	₩.	+	₩'	+—'	₩	<u></u> '	+	 '	 '	 '	+	+	•	+-	_	₩	₩	—	₩
Ceiling - suspended	PCA-M35KA	<u>+</u> '	<u> </u>	₩'	0	<u></u> '	↓ —′	₩.	₩	—'	—'	₩	<u></u> '	\leftarrow	<u></u> '	<u> </u>	<u></u> '			—	\perp		_	$\perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp$	_	_
suspended	1 O/ CINICOTO C	4—"	4—	+-	•		₩'	 '	+	+'	← '	_	-	\leftarrow	4-	+'	+	-	4	4-	+-	•	-		\leftarrow	+-
	PCA-M60KA	 '		+'		•	+'	+	+	 '	+'	₩	<u>+</u> '	+	+'	 '	 '	+	+	+	+	₩	-	•	₩	+-
	PCA-M71KA	 '	<u> </u>	-	-	•	 	-	+-	 '	<u>+</u> '	_	<u> </u>	+-	<u>+</u> '	 '	-	_	_	_	+	₩	0	\vdash	₩	_
	PCA-M100KA	4-	+		-		•			+		_	+	\leftarrow	+	-	-	\leftarrow	4	4	+	4	•		-	
	PCA-M125KA	+'	+	+'	+	 	•	<u> </u>	\leftarrow	+'	<u>—</u>	+	+'	\leftarrow	+'	+'	+'	t	+	+-	+-	+-	•	\vdash		+
	PCA-M140KA PCA-M71HA			—	<u> </u>	<u> </u>	•	<u> </u>	\vdash	-		_		_	—	—	-		+-	\vdash	+	+	•	\vdash	_	
Floor -	PCA-M/1HA PSA-RP71KA	-	+	+	_		 '		\leftarrow	+'		\vdash	+	\leftarrow	+'	+	+'	•	4	+-	+-	4—	\leftarrow	\vdash		\vdash
standing		+'	+	+'	 	 	<u>+</u> '		+	+'	<u> </u>	+	+'	+	+'	+'			+	+	+-	+	+	\vdash		+
Stariumy	PSA-RP100KA	 '		-	<u> </u>	<u> </u>	<u> </u>	—	_	-		_	 	_	—	 '	-		+-	\vdash	+	+	\vdash	\vdash	\vdash	\vdash
	PSA-RP125KA	4—"	+	-	-	-	+'	-	1	+	-		1	1	4		+	\leftarrow	4	4—	4	4	_	\vdash	\vdash	+-
	PSA-RP140KA	1 '	1 '	1 '	1 '	1 '	1 '	1 '	1	1 '	1 '	1	1	1	1 '	1 '	1 '	1	1	1			1	1 '	1	_

^{*1} P Series indoor units can be used in combination with SUZ or MXZ outdoor units.
*2 Unable to use with wireless remote controller.
*3 PAC-SH29TC-E is required for wireless model.
*4 Group control cannot be used.

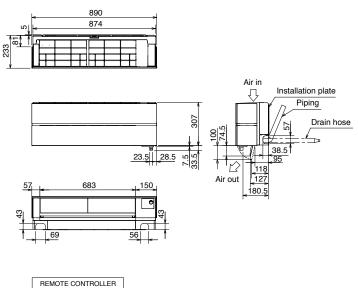
				MA &							Wir	ed Remo	ote Conti	roller		Wirele	ess Re	mote C	ontrolle			<u> </u>		Connector
	Deco		System Control Interface	Contact Terminal Interface	Wi-Fi Interface			ver Su rminal				Controlle	er	Terminal Block kit for PKA	Sig Ser	ınal nder	F	Signal Receive	r	Controller Kit (Sender & Receiver)	Remote Sensor	Remote On/Off Adapter	Remote Operation Adapter	Cable for Remote Display
	PAC- SF81 KC-E	PAC- SF82 KC-E	MAC- 334IF-E	MAC- 397IF-E	MAC- 567IF-E	PAC- SK38 HR-E	PAC- SG94 HR-E	PAC- SG96 HR-E	PAC- SG97 HR-E	PAC- SJ39 HR-E	PAR- 40MAA	PAR- CT01MAA	PAC- YT52CRA	PAC- SH29TC-E	PAR- SL97 A-E	PAR- SL100 A-E	PAR- SA9C A-E	PAR- SF9 FA	PAR- SE9 FA-E	PAR- SL94 B-E	PAC- SE41 TS-E	PAC- SE55 RA-E	PAC- SF40 RM-E	PAC- SA88 HA-E
			•	•	•						•	•	•		•	●*4		•			•	•	● *2	•
			•	•	•						•	•	•		•	●*4 ●*4		•			•	•	*2 *2	•
			•	•	•						•	•	•		•	0*4		•			•	•	• 2	•
			-	•							•	•	•		•	0*4		•			•	•	• *2	
			•	•	•						DA	DA	DA		•		•				•	•	•*2	•
			•	•							DA	DA	DA		•		•				•	•	• *2	•
			•	•	•						DA	DA	DA									•	•*2	•
				•							DA	DA	DA		•		•				•	•	•*2	•
			*1	• 1 • 1	•					•	DA	DA	DA		•	● *4	•		•		•	•	*2 *2	•
			91	011						•	•		•		•	0 *4					•	•	0.5	
			-11	•1	•					•	•		•		•	• 4			•		•	•	• 2	
			1 1	•1	•					•	•	•	•		•	● *4			•			•	* 2	•
			● *1	• "1	•					•	•	•	•		•	●*4			•			•	•*2	•
			1	• "1							•		•		•	●*4						•	* 2	
			●"1 ●"1	011	•					•		•	•		•	● *4			•		•		● *2	•
			0°1	*1 *1	•					•	•	•	•		•	●*4 ●*4			•		•	•	*2 *2	•
			11	911	•					•	•	•	•		•	0*4			•		•	•	• 2	•
			-11	011	•					•	•	•	•		•	6 *4			•		•	•	• 2	
			1	011	•					•	•	•	•		•	6 *4			•			•	•*2	•
			•	•						•	•	•	•		•	●*4			•				• *2	•
			•	•						•	•	•	•		•	●*4					•		• *2	
			1 1	0 *1	•				•		•	•	•		•		•				•	•	* 2	•
			●*1 ●*1	●*1 ●*1	•				•		•	•	•		•		•				•	•	*2 *2	•
			-11	011					•		•		•		•								• 2	
			-1	-11	•				•		•	•	•		•		•				•	•	•*2	
			1 1	0 *1	•				•		•	•	•		•		•				•	•	• *2	•
			● *1	• *1																			• *2	
			● *1	1 1	•							•										•	•*2	•
			1 1	1 1							•	•	•		•		•				•		•*2	•
			*1 *1	*1 *1	•	•					•*3	●.3 ●.3	•*3	•	•	•					•	•	*3 *2	•
			-1	011	•						9.3	9.3	9.3	•	•	•					•	•	-	•
			011	011			•				9.3	9.3	-3	•	•						•	•		
			1 1	1 1	•		•				●,3	●.3	●,3	•	•						•	•		•
			1 1	• *1	•			•			•	•	•		•					•	•	•	• *2	•
			1 1	• *1	•			•				•	•		•							•	•*2	•
			1 1	1 1	•			•			•	•	•		•					•	•	•	•*2	•
			1 1	• *1	•			•			•	•	•		•					•	•	•	*2 *2	•
											•		•		•						•	•	0*2	
-								•			•	•	•		•						•	•	• 2	
	•										•	•	•		•						•	•	• *2	
					•			•													•	•	•*2	•
					•			•													•	•	•*2	•
					•			•													•	•	•*2	•
					•			•			<u> </u>		<u> </u>		l		l				•		• *2	•

Optional Parts List <Outdoor>

	0				Distributi	ion Pipe						Joint	Pipe				Liquid F	Refrigera	nt Dryer	
		Option		Turin		·	F 0	nder-1	Unit ø6.35		Unit ø15.88	Unit			Unit				For	
			For 7 (50:		For T (33:33		For Qua (25:25:	adruple :25:25)	96.35 > Pipe	>	#15.88 > Pipe	ø9.52 > Pipe	>	ø9.52 > Pipe	>	>	For pipe ø6.35	For pipe	pipe	
								l			ø19.05	ø15.88	ø9.52	ø12.7	ø9.52	ø15.88		JJ.02	۱۷.۱ ت	
_	itdoor Unit		MSDD- 50TR-E	MSDD- 50WR-E	MSDT- 111R-E	MSDT- 111R3-E	MSDF- 111R-E	MSDF- 111R2-E	PAC- SG72	PAC- SG73	PAC- SG75	PAC- SG76	PAC- 493	Flare MAC- A454	MAC-	MAC- A456 JP-E	PAC- SG81	PAC- SG82	PAC- SG85	
UL	utdoor Unit	MUZ-LN25VG	SOIN-E	SOVALU-E	···n-E	ıı	····R-E	2-E	RJ-E	RJ-E	RJ-E	SG76 RJ-E	493 PI	JP-E	JP-E	JP-E	DR-E	DR-E	DR-E	<u> </u>
	L Series	MUZ-LN25VGHZ																		
		MUZ-LN35VG																		
		MUZ-LN35VGHZ MUZ-LN50VG				<u> </u>	-			\vdash	-	-		\vdash	\vdash	\vdash	\vdash	<u> </u>	\vdash	\vdash
		MUZ-LN50VGHZ																		
	FT Sories	MUZ-LN60VG MUZ-FT25VGHZ						\vdash	\vdash	\Box	\Box	\Box		$ar{\Box}$	$\vdash \bar{\vdash}$	$\vdash \vdash$	$\vdash \exists$	$\overline{\Box}$	\vdash	\vdash
	FT Series	MUZ-FT35VGHZ																		
	A Coder	MUZ-FT50VGHZ														\Box				
	A Series	MUZ-AP15VG MUZ-AP20VG																		
		MUZ-AP25VG																		
		MUZ-AP25VGH MUZ-AP35VG																		
		MUZ-AP35VGH																		
		MUZ-AP42VG																		
		MUZ-AP42VGH MUZ-AP50VG																		
		MUZ-AP50VGH																		
		MUZ-AP60VG MUZ-AP71VG																		
	E Series	MUZ-EF25VG		<u> </u>																
	E Series	MUZ-EF25VGH																		
		MUZ-EF35VG MUZ-EF35VGH			 					\vdash		-		$\vdash\vdash$	\vdash	\vdash	\vdash		\vdash	-
		MUZ-EF42VG																		
	BT Series	MUZ-EF50VG MUZ-BT20VG		\vdash	\vdash				\vdash	$\vdash \vdash \vdash$				$\vdash \vdash \vdash$	$\vdash \vdash$	\vdash	\vdash		\vdash	<u> </u>
	D1 Genes	MUZ-BT25VG																		
		MUZ-BT35VG														\Box				
	HR Series	MUZ-BT50VG MUZ-HR25VF																		
S		MUZ-HR35VF																		
SERIES		MUZ-HR42VF MUZ-HR50VF																		
M SE		MUZ-HR60VF																		
	TD Sories	MUZ-HR71VF																		
	TP Series	MUY-TP35VF MUY-TP50VF																		
	F Series	MUZ-FH25VE																		
		MUZ-FH25VEHZ MUZ-FH35VE																		
		MUZ-FH35VEHZ																		
		MUZ-FH50VE																		
	S Series	MUZ-FH50VEHZ MUZ-SF25VE		<u></u>																
		MUZ-SF25VEH																		
		MUZ-SF35VE MUZ-SF35VEH				<u> </u>	-		\vdash	\vdash			'	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash
		MUZ-SF42VE																		
		MUZ-SF42VEH MUZ-SF50VE		\vdash	$\vdash = $			$\vdash \vdash \vdash$	\vdash	\Box	\Box		\Box	oxdot	oxdot	$\vdash \vdash \vdash$	ert		igsquare	
		MUZ-SF50VEH																		
	G Series	MUZ-GF60VE																		
	W Series	MUZ-GF71VE MUZ-WN25VA																		
		MUZ-WN35VA																		
	D Series	MUZ-DM25VA MUZ-DM35VA																		
	H Series	MUZ-HJ25VA																		
		MUZ-HJ35VA																		
		MUZ-HJ50VA MUZ-HJ60VA																		
	0	MUZ-HJ71VA																		
	Compact floor	MUFZ-KJ25VE MUFZ-KJ25VEHZ																		
		MUFZ-KJ35VE																		
		MUFZ-KJ35VEHZ																		
		MUFZ-KJ50VE MUFZ-KJ50VEHZ																		
	SERIES	SUZ-M25VA																		
(R3		SUZ-M35VA SUZ-M50VA		\vdash			-		 	\vdash			-	\vdash	•	\vdash	\vdash	 	\vdash	-
		SUZ-M60VA																		
	DEDIES.	SUZ-M71VA	\vdash	\Box				\vdash	\vdash	Щ	Щ		\Box	Щ	Щ	\vdash	\Box	\vdash	\Box	\vdash
	SERIES 410A)	SUZ-KA25VA6 SUZ-KA35VA6													•					
V-14		SUZ-KA50VA6																		
		SUZ-KA60VA6 SUZ-KA71VA6																	آليا	
		OUL INTIVAU																		

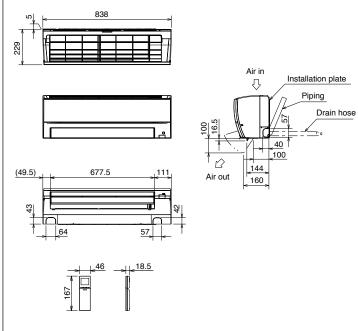
	Air Outlet Guide MAC- MAC- MAC- MAC- MAC- PAC- PAC- 881 882 856 886 883 SJ07 SG59 SG SG-E SG SG-E SG-E SG-E							Air Protectio		Guide	Dra	ain Soc	ket	р	Freeze- reventio Heater Drain P	n	Centra	ılized Dra	ain Pan	M-NET Adapter	M-N Conv	IET erter	Control/ Service Tool	Step Interface 1 PC board w/attach- ment kit	Insul fo Accum	ation or nulator	High Static Fan Motor	
•	MAC- 881 SG	MAC- 882 SG	MAC- 856 SG	MAC- 886 SG-E	MAC- 883 SG	PAC- SJ07 SG-E	PAC- SG59 SG-E	PAC- SH96 SG-E	PAC- SJ06 AG-E	PAC- SH63 AG-E	PAC- SH95 AG-E	PAC- SJ08 DS-E	PAC- SG60 DS-E	PAC- SG61 DS-E	MAC- 643 BH-E	MAC- 644 BH-E	MAC- 646 BH-E	PAC- SG63 DP-E	PAC- SG64 DP-E	PAC- SH97 DP-E	PAC- IF01 MNT-E	PAC- SJ96 MA-E	PAC- SJ95 MA-E	PAC- SK52ST	PAC- IF012 B-E	MAC- 892 INS-E	MAC- 893 INS-E	PAC- SJ71 FM-E
	•																											
	•																											
	•	•																										
				•																								
	•	•																										
		•			•																							
	•																											
	•																											
	•																											
	•																											
		•																										
		•		•																								
	•																											
	•																											
	•																											
		•			•																							
					•																							
	•																											
					•																							
	•																											
		•																										
	•																											
	•																											
	•																											
	•			•																								
	•																											
	•																											
	•			6																								
				•																								
				•																								
					•																							
					•																							
					0																							
	•																											
				•																								
	•																											
	•																											
				•																								
	•																											
	•			•																								
				•																								
	•														•													
				•												•												
				•																								

Optional Parts List <Outdoor>


	Option			Di	istribut	ion Pip	е	1		Brai	nch Pip	e/Hea	der (Jo	oint)											Liquid F	ele pipe pipe pipe of 12. C- PAC- PAC- SCA2 SCA8 SCA8 SCA8 SCA8 SCA8 SCA8 SCA8 SCA8	nt Dryer	_
	24.000		_			_		-	or						[Init a	16 25	Unit	19.52	Unit ø15.88	Unit ø9.52	Unit	Unit	Unit	Unit ø12 7	For	For	For	ı
								Quad	druple				Hea	der	:	>		>	>	>	>	>	>	>	pipe	pipe	pipe	ı
			•	,		`	,	(25:25	:25:25)	bo	xes				Pipe Ø	9.52	Pipe @				ø9.52	ø12.7	ø9.52		ø6.35	ø9.52	ø12./	ı
		MCDD	Medu	Medu	Medu	MODT	MCDT	MODE	MCDE	Flare	Brazing	CMY-	CMY-	CMY-	PAC-	PAC-	PAC-		PAC-	DAG	DAG	Flare	1440	1440	PAC-	PAC-	PAC-	ı
utdoor Unit										MSDD-	MSDD-	Y62-	Y64-	Y68- G-E						SG76	493	A454	A455	A456		SG82	SG85	i
Power	PUZ-ZM35VKA	╁								JOHNE	OODIT L	<u> </u>	-	ŭ <u>-</u>	1.0 2	•	1.0 =			RJ-E	PI	JP-E	JP-E	JP-E	•		D	_
Inverter	PUZ-ZM50VKA															•									•			_
(R32)	PUZ-ZM60VHA																	•										_
	PUZ-ZM71VHA PUZ-ZM100VKA	-																										_
	PUZ-ZM100YKA						•											•								_		_
	PUZ-ZM125VKA		•				•		•									•								•		_
	PUZ-ZM125YKA						•		•									•								_		
	PUZ-ZM140VKA PUZ-ZM140YKA								_																			_
	PUZ-ZM200YKA				•		•		•																			_
	PUZ-ZM250YKA				•		•		•																			Ξ
Power	PUHZ-ZRP35VKA2		-												•										•			_
Inverter (R410A)	PUHZ-ZRP50VKA2 PUHZ-ZRP60VHA2														•										•			_
	PUHZ-ZRP71VHA2																•		•									_
	PUHZ-ZRP100VKA3	•				•											•		•							•		_
	PUHZ-ZRP100YKA3	•				•											•											
	PUHZ-ZRP125VKA3 PUHZ-ZRP125YKA3		+		-					-					\vdash		_											_
	PUHZ-ZRP140VKA3	•				•		•									•		•									_
	PUHZ-ZRP140YKA3	•				•		•									•		•							•		_
	PUHZ-ZRP200YKA3 PUHZ-ZRP250YKA3			•		0		•									•									•		
Standard	PUHZ-ZRP250YKA3 PUZ-M100VKA																											_
Inverter	PUZ-M125VKA		•																									_
(R32)	PUZ-M140VKA		•				•																					Ī
	PUZ-M100YKA	1	•			_				<u> </u>					oxdot			\Box										_
	PUZ-M125YKA PUZ-M140YKA		_																									Ē
	PUZ-M200YKA				•		•		•																			_
	PUZ-M250YKA				•		•		•																		•	_
Standard	PUHZ-P100VKA	•																										4
Inverter (R410A)	PUHZ-P125VKA PUHZ-P140VKA	_	1		1	•									\vdash													_
	PUHZ-P100YKA	•														16.35 Unit up 5.2												
	PUHZ-P125YKA	Fee Tuning (25-35) Fee Tu	-		_																							
	PUHZ-P140YKA	•				_																				_		
	PUHZ-P200YKA3 PUHZ-P250YKA3			_																							•	
IXZ SERIES	MXZ-2F33VF3																											_
R32)	MXZ-2F42VF3																											Ī
	MXZ-2F53VF(H)3	1	-																									_
	MXZ-2F53VFHZ MXZ-3F54VF3																											
	MXZ-3F68VF3																			•	•							
	MXZ-4F72VF3																			_								Ē
	MXZ-4F80VF3 MXZ-4F83VF																											A
	MXZ-4F83VF MXZ-4F83VFHZ	1	+												\vdash													_
	MXZ-5F102VF																											
	MXZ-6F122VF																			•		•		•				_
	MXZ-2HA40VF MXZ-2HA50VF																											
	MXZ-2HA50VF MXZ-3HA50VF																											f
IXZ SERIES	MXZ-2D33VA																											_
R410A)	MXZ-2D42VA2																											أع
	MXZ-2D53VA(H)2 MXZ-2E53VAHZ	1	+	-											\vdash													_
	MXZ-2E53VAHZ MXZ-3E54VA																											
	MXZ-3E68VA																					•						Ĺ
	MXZ-4E72VA		\perp																					_				_
	MXZ-4E83VA MXZ-4E83VAHZ																											Æ
	MXZ-4E83VAHZ MXZ-5E102VA														\vdash			\vdash				_						_
	MXZ-6D122VA2																							_				Ī
	MXZ-2DM40VA	1													oxdot			\sqcup										_
IMV Cories	MXZ-3DM50VA PUMY-SP112VKM(-BS)																											
UMY Series R410A)	PUMY-SP112YKM(-BS)									_																		f
,	PUMY-SP125VKM(-BS)									•	•	•	•	•														_
	PUMY-SP125YKM(-BS)									_	_														For pipe pipe of 6.35 op 9.52 of 12		أع	
	PUMY-SP140VKM(-BS) PUMY-SP140YKM(-BS)	-	-		-	-				_	_		_	_														_
	PUMY-SP140YKM(-BS) PUMY-P112VKM5(-BS)									_	_		_															
	PUMY-P112YKM(E)4(-BS)		L							_	_		_															_
	PUMY-P125VKM5(-BS)									•	•	•	•	•			•											_
	PUMY-P125YKM(E)4(-BS)									_	_		_															أع
	PUMY-P140VKM5(-BS) PUMY-P140YKM(E)4(-BS)	-	-							_	_		_	_														_
	PUMY-P140YKM(E)4(-BS) PUMY-P200YKM2(-BS)									_	_								_									
		_									_	-	_	_					_									7
OWERFUL	PUHZ-SHW112VHA														'				!		'							`
POWERFUL HEATING	PUHZ-SHW112YHA	•																								•		_

	Branch Box	Reactor Box		Diff	erent Diameter	Joint	
	Outer Cover	neactor box	ø9.52>ø12.7	ø12.7>ø9.52	ø12.7>ø15.88	ø6.35>ø9.52	ø9.52>ø15.88
	PAC- AK350CVR-E	PAC- RB01BC	MAC- A454JP	MAC- A455JP	MAC- A456JP	PAC- 493PI	PAC- SG76RJ-E
PAC-MK34BC (Flare)	•	•	•	•	•	•	•
PAC-MK54BC (Flare)	•	•	•	•	•	•	•

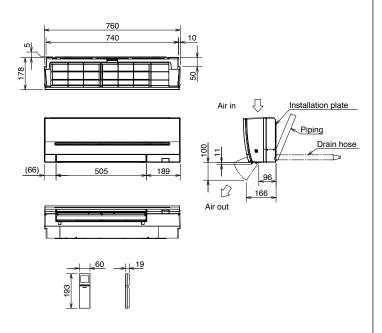
Air Outlet Guide		,	Air Out	let Gui	de		Air Pro	tection	Guide	Dra	ain Soc	ket			e-preve for Dra		Heater			entraliz rain Pa		M-NET Adapter	M-N Conv		Control Service Tool	1 PC w/at	ep rface board tach- nt kit	Insu f Accu	lation or mlator	Con- nection Kit	High Static Fan Motor
MAC- MAC- 881 882 SG SG	MAC 856 SG	- MAC- 886 SG-E	MAC- 883 SG	PAC-SJ07 SG-E	PAC- SG59 SG-E	PAC-SH96 SG	PAC-SJ06 AG-E	PAC-SH63 AG-E	PAC-SH95 AG-E	PAC- SJ08 DS-E	PAC-SG60 DS-E	PAC-SG61 DS-E	MAC- 643 BH-E	MAC- 644 BH-E	PAC- 645 BH-E	PAC- 646 BH-E	PAC- SJ10 BH-E	PAC- SJ20 BH-E	PAC-SG63 DP-E	PAC- SG64 DP-E	PAC-SH97 DP-E	PAC- IF01 MNT-E	PAC- SJ96 MA-E	PAC-SJ95 MA-E	PAC-SK52 ST	PAC- IF012 B-E	PAC-(S) IF013 B-E	MAC- 892 INS-E	MAC- 893 INS-E	PAC- LV11 M-J	PAC- SJ71 FM-E
	•										•				•		•				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
					•	•		•	0			•						•			•			•		•	•			•	0


$$\label{eq:msz-ln25vg2} \begin{split} & \text{MSZ-LN25vG2(W)(V)(R)(B)} & \text{MSZ-LN35vG2(W)(V)(R)(B)} \\ & \text{MSZ-LN50vG2(W)(V)(R)(B)} & \text{MSZ-LN60vG2(W)(V)(R)(B)} \end{split}$$

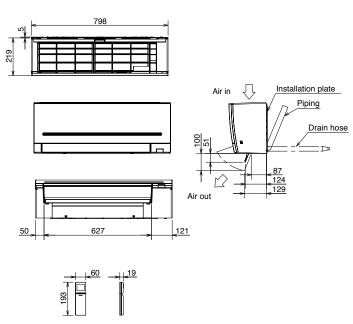
INDOOR UNIT

MSZ-FT25VG MSZ-FT35VG MSZ-FT50VG MSZ-FT25VGK MSZ-FT35VGK MSZ-FT50VGK

INDOOR UNIT

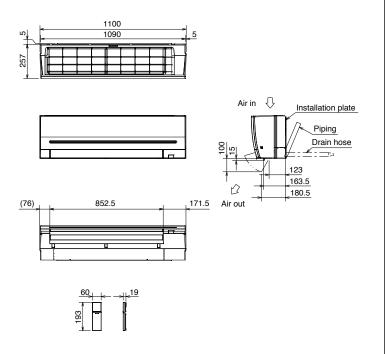

MSZ-AP15VG MSZ-AP20VG

IN CASE OF (V)(R)(B)

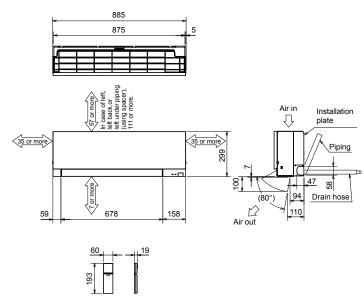

INDOOR UNIT

193

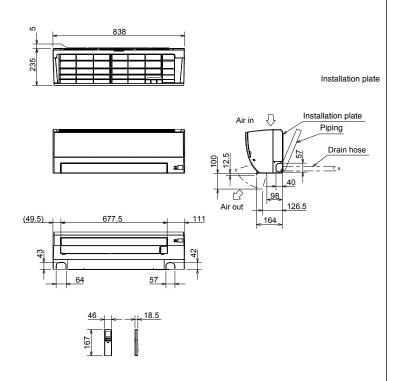
193



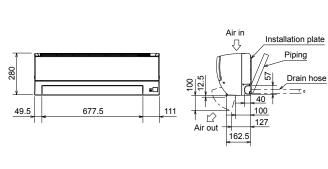
MSZ-AP25VG MSZ-AP35VG MSZ-AP42VG MSZ-AP50VG MSZ-AP25VGK MSZ-AP35VGK MSZ-AP42VGK MSZ-AP50VGK


MSZ-AP60VG MSZ-AP71VG MSZ-AP60VGK MSZ-AP71VGK

INDOOR UNIT

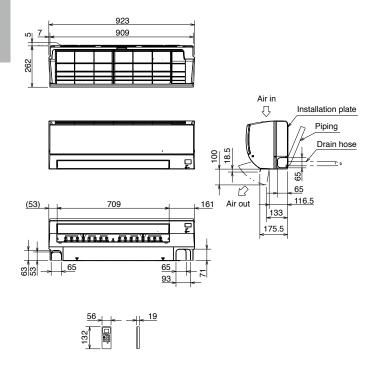

MSZ-EF18VG(W)(B)(S) MSZ-EF22VG(W)(B)(S)
MSZ-EF25VG(W)(B)(S) MSZ-EF35VG(W)(B)(S)
MSZ-EF18VGK(W)(B)(S) MSZ-EF50VG(W)(B)(S)
MSZ-EF25VGK(W)(B)(S) MSZ-EF22VGK(W)(B)(S)
MSZ-EF42VGK(W)(B)(S) MSZ-EF50VGK(W)(B)(S)

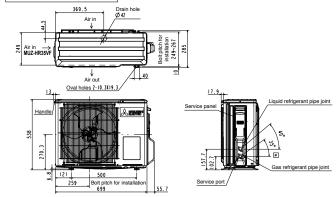
INDOOR UNIT


MSZ-BT20VG MSZ-BT25VG MSZ-BT35VG MSZ-BT50VG MSZ-BT20VGK MSZ-BT25VGK MSZ-BT35VGK MSZ-BT50VGK

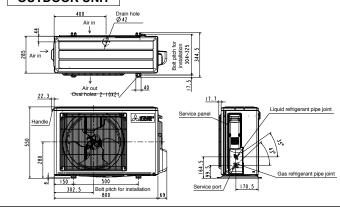
INDOOR UNIT

MSZ-HR25VF MSZ-HR35VF MSZ-HR42VF MSZ-HR50VF

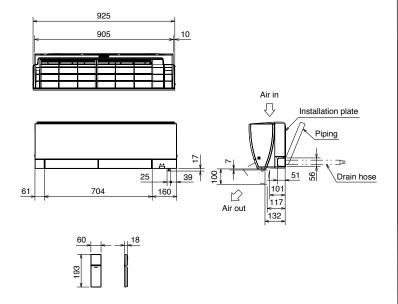

838


MSZ-HR60VF MSZ-HR71VF

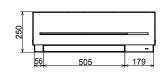
INDOOR UNIT

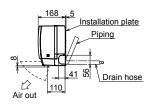

MUZ-HR25VF MUZ-HR35VF MUZ-BT20VG MUZ-BT35VG

OUTDOOR UNIT

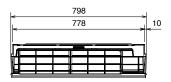

MUZ-HR42VF MUZ-HR50VF

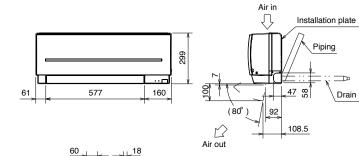
OUTDOOR UNIT


MSZ-FH25VE2 MSZ-FH35VE2 MSZ-FH50VE2

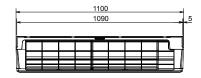

INDOOR UNIT

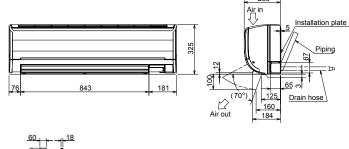
MSZ-SF15VA MSZ-SF20VA





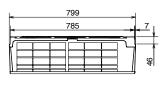
MSZ-SF25VE3 MSZ-SF35VE3 MSZ-SF42VE3 MSZ-SF50VE3

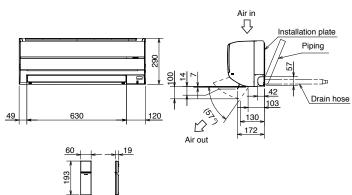

INDOOR UNIT

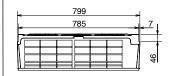


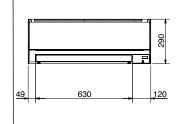
MSZ-GF60VE2 MSZ-GF71VE2

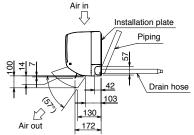
INDOOR UNIT



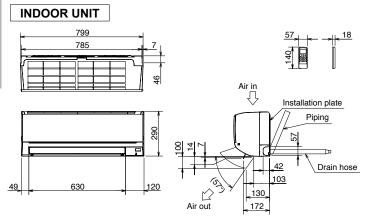


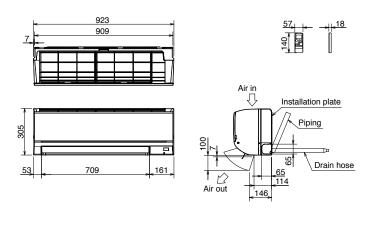

MSZ-WN25VA MSZ-WN35VA

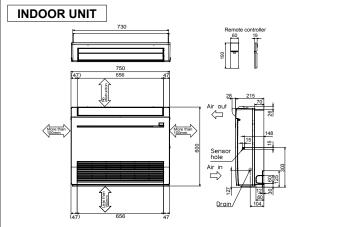

INDOOR UNIT



MSZ-DM25VA MSZ-DM35VA

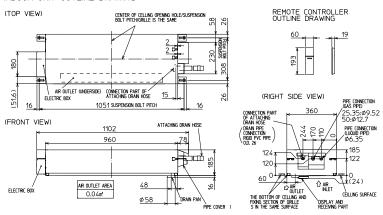


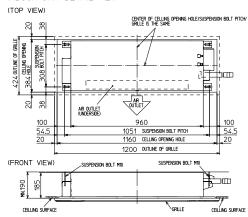


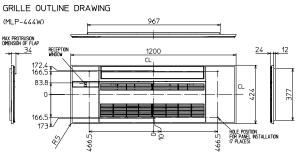

MSZ-HJ25VA MSZ-HJ35VA MSZ-HJ50VA

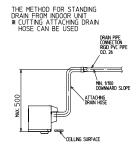
MSZ-HJ60VA MSZ-HJ71VA MSY-TP35VF MSY-TP50VF

MFZ-KT25VG MFZ-KT35VG MFZ-KT50VG MFZ-KT60VG

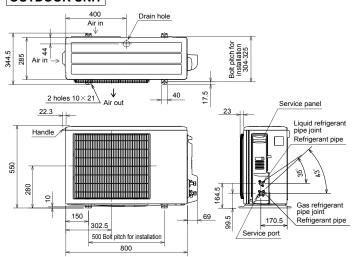

MFZ-KJ25VE2 MFZ-KJ35VE2 MFZ-KJ50VE2


MLZ-KP25VF MLZ-KP35VF MLZ-KP50VF

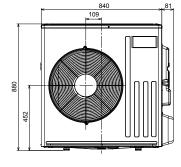

INDOOR UNIT

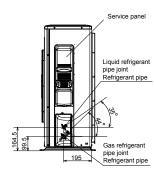


INDOOR UNIT DETAIL VIEW


		KP25/35VF	KP50VF	
EXTENSION	LIQUID PIPE O.D.	Ø6	.35	
PIPE	GAS PIPE O.D.	ø9.52	ø12.7	
CONNECTIONS LIQUID PI		FLARED CONNECTION Ø6.35		
OF PIPE	GAS PIPE	Flared Connection Ø9.52	FLARED CONNECTION Ø12.7	
DRAIN HOSE		HEAT INSULATER O.D. CONNECT Ø32 Ø2		
DRAIN PIPE CONNECTION		RIGID PVC PIPE	O.D. 26	

MUZ-LN25VGHZ MUZ-LN25VG MUZ-LN35VG MUZ-LN35VGHZ MUZ-AP20VG MUZ-AP25VG MUZ-AP25VGH MUZ-AP35VGH MUZ-AP35VG MUZ-AP42VG MUZ-AP42VGH MUZ-HR42VF MUZ-FT25VGHZ MUZ-HR50VF MUZ-FH25VE MUZ-FH35VE MUZ-FH25VEHZ MUZ-FH35VEHZ MUZ-EF25VG MUZ-EF25VGH MUY-TP50VF MUZ-EF35VGH **MUZ-EF35VG MUZ-EF42VG MUY-TP35VF MUZ-SF35VE MUZ-SF42VEH MUZ-SF25VE MUZ-SF25VEH MUZ-SF35VEH MUZ-SF42VE MUZ-HJ50VA MUFZ-KJ25VE MUFZ-KJ35VE**


OUTDOOR UNIT

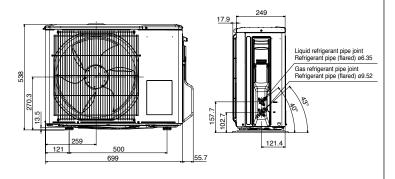

MUFZ-KJ25VEHZ MUFZ-KJ35VEHZ

MUZ-LN50VGHZ **MUZ-LN60VG MUZ-AP71VG MUZ-FH50VEHZ MUZ-FH50VE MUZ-SF50VE** MUZ-SF50VEH **MUZ-GF60VE MUZ-GF71VE MUZ-HJ60VA MUZ-HJ71VA MUFZ-KJ50VE MUFZ-KJ50VEHZ OUTDOOR UNIT**

Drain hole Ø42 ↓ Air out 2-holes 10 X 21

MUZ-AP60VG

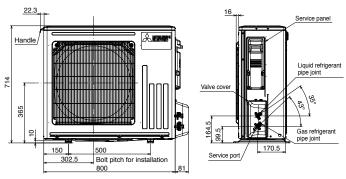
MUZ-WN25VA MUZ-WN35VA MUZ-HR25VF **MUZ-HR35VF** MUZ-DM25VA MUZ-DM35VA MUZ-HJ25VA MUZ-HJ35VA **MUZ-AP15VG**


MUZ-BT20VG MUZ-BT25VG MUZ-BT35VG

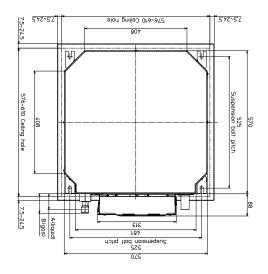
MUZ-BT50VG

OUTDOOR UNIT

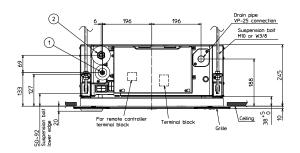
349.5

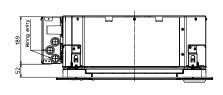

Û Drain hole ø33 9.6 Air out 2-10.3×19.3 Oval hole

MUZ-LN50VG MUZ-FT35/50VGHZ MUZ-AP50VG MUZ-AP50VGH MUZ-EF50VG MUZ-HR60VF MUZ-HR71VF

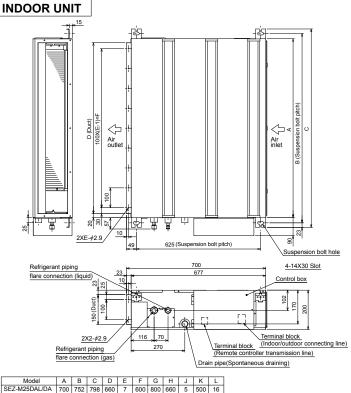

OUTDOOR UNIT

Drain hole ø42 Û Bolt pitch for installation 304~325 Air in 17.5 40 Oval holes 2-10×21



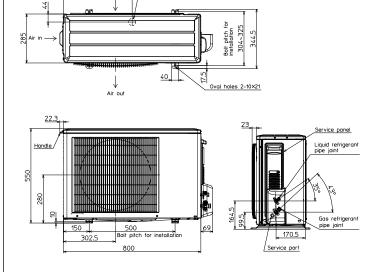

SLZ-M15FA SLZ-M25FA SLZ-M35FA SLZ-M50FA SLZ-M60FA

INDOOR UNIT

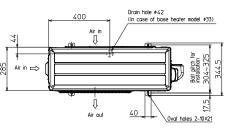


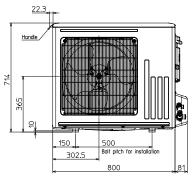
Models	Refrigerent pipe (liquid)	② Refrigerent pipe (gas)	Α	В
SLZ-M15FA SLZ-M25FA SLZ-M35FA			63mm	72mm
SLZ-M50FA		φ 12.7mm flared connection 1/2F	63mm	78mm
SLZ-M60FA		\$\phi\$ 15.88mm flared connection 5/8F	63mm	78mm

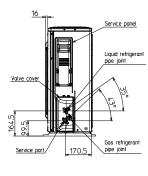
SEZ-M25DA(L) SEZ-M35DA(L) SEZ-M50DA(L) SEZ-M60DA(L) SEZ-M71DA(L)



Notes: 1. Use M10 bolts for suspension (purchase locally). 2. Keep service space for maintenance at the bottom. 3. This chart is based on the SEZ-M50DAL/DA, which has three fans. SEZ-M25, 35DAL/DA has two fans, and SEZ-M60, 71DAL/DA has four fans. 4. If an inlet duct is used, remove the air filter supplied with the unit, and install a locally purchased filter on the suction side.

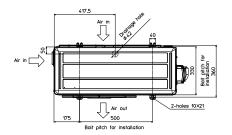

SUZ-M25VA SUZ-M35VA

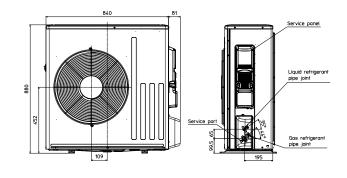

OUTDOOR UNIT



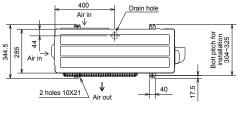
SUZ-M50VA

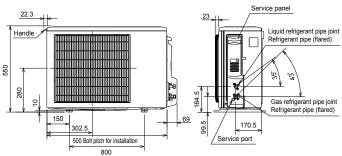
OUTDOOR UNIT

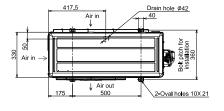


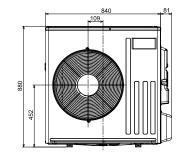


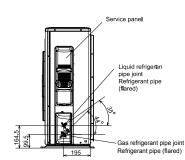
SUZ-M60VA SUZ-M71VA


INDOOR UNIT

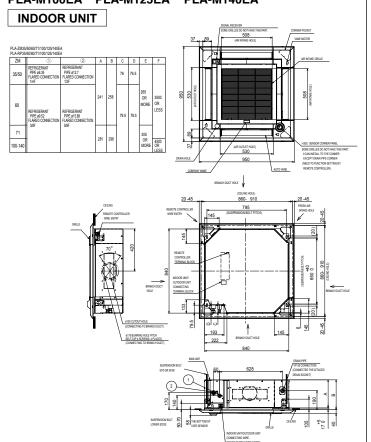


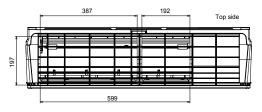

SUZ-KA25VA6 SUZ-KA35VA6

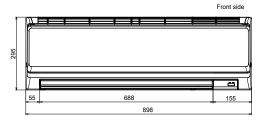

INDOOR UNIT

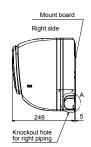


SUZ-KA50VA6 SUZ-KA60VA6 SUZ-KA71VA6

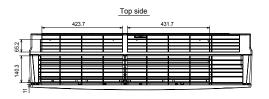


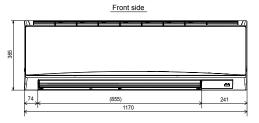


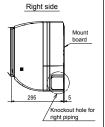

P SERIES Unit: mm


PLA-ZM35EA PLA-ZM50EA PLA-ZM60EA PLA-ZM71EA PLA-ZM100EA PLA-ZM125EA PLA-M60EA PLA-M71EA PLA-M100EA PLA-M125EA PLA-M140EA

PKA-M35HA(L) PKA-M50HA(L) INDOOR UNIT

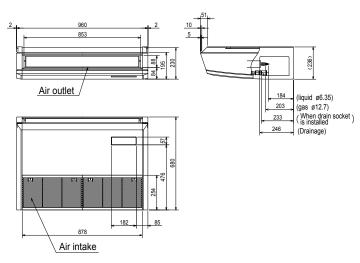






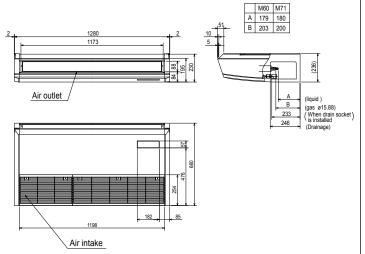
PKA-M60KA(L) PKA-M71KA(L) PKA-M100KA(L)

INDOOR UNIT



PCA-M35KA PCA-M50KA

INDOOR UNIT

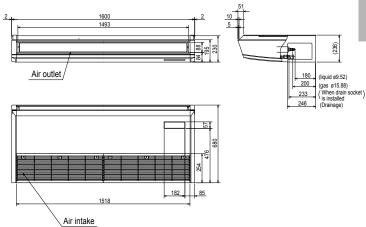


NOTES.

- 1.Use M10 or W3/8 screw for anchor bolt.
- 2.Please be sure when installing the drain pump (option parts), refrigerant pipe will be only upward.

PCA-M60KA PCA-M71KA

INDOOR UNIT

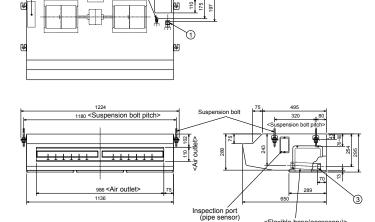

NOTES.

- 1.Use M10 or W3/8 screw for anchor bolt.
- 2.Please be sure when installing the drain pump (option parts), refrigerant pipe will be only upward.

Use the current nuts meeting the pipe size of the outdoor unit. Available pipe size

PCA-M100KA PCA-M125KA PCA-M140KA

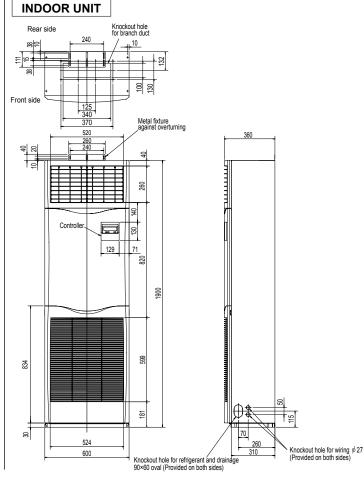
INDOOR UNIT


NOTES.

- 1.Use M10 or W3/8 screw for anchor bolt.
- 2.Please be sure when installing the
- drain pump (option parts), refrigerant pipe will be only upward.

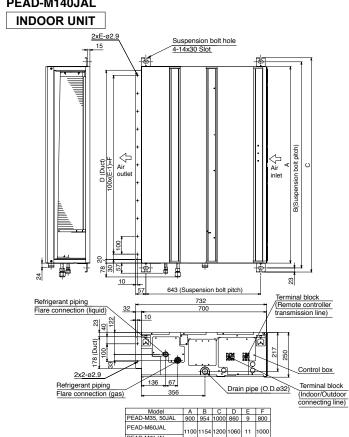
PCA-M71HA

INDOOR UNIT

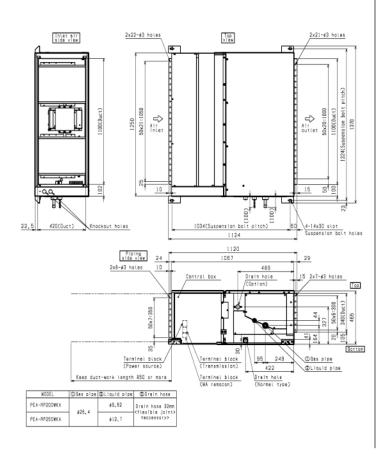

Terminal block box

<Flexible hose(accessory)>

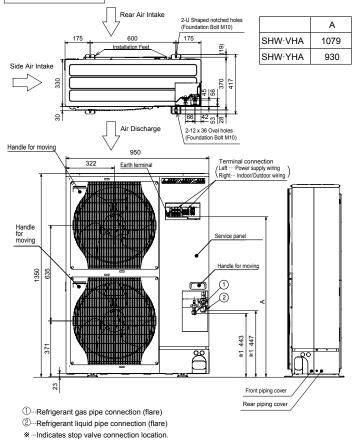
- ①Refrigerant pipe connection(gas pipe side/flared connection) ②Refrigerant pipe connection(liquid pipe side/flared connection) ③Flexible hose(accessory) —Drainage pipe connection


PSA-RP71KA PSA-RP100KA PSA-RP125KA PSA-RP140KA

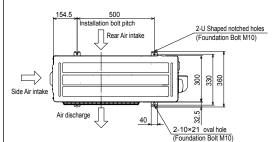
PEAD-M35JA PEAD-M50JA PEAD-M60JA PEAD-M71JA PEAD-M100JA PEAD-M125JA PEAD-M140JA

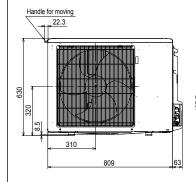

INDOOR UNIT Suspension bolt hole 4-14x30 Slot A B(Suspension bolt pitch) Air outlet 65 83 10 g 28 643 (Suspension bolt pitch) Terminal block (Remote controller 32 transmission line) Drain pipe Drain pump Control box 2x2-ø2.9 Drain pipe (O.D.ø32) (Spontaneous draining) Refrigerant piping Flare connection (gas) connecting line) A B C D E F G 900 954 1000 860 9 800 858 Model PEAD-M35, 50JA PEAD-M60JA 1100 1154 1200 1060 11 1000 1058 PEAD-M71JA PEAD-M100, 125JA | 1400 | 1454 | 1500 | 1360 | 14 | 1300 | 1358 | PEAD-M140JA | 1600 | 1654 | 1700 | 1560 | 16 | 1500 | 1558 |

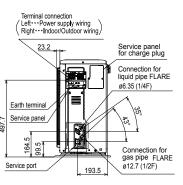
PEAD-M35JAL PEAD-M50JAL PEAD-M60JAL PEAD-M71JAL PEAD-M100JAL PEAD-M125JAL PEAD-M140JAL


PEAD-M100, 125JAL 1400 1454 1500 1360 14 1300
PEAD-M140JAL 1600 1654 1700 1560 16 1500

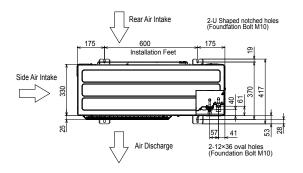
PEA-RP200WKA PEA-RP250WKA

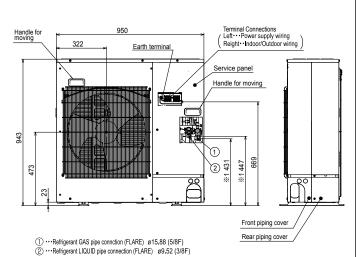



PUHZ-SHW112VHA PUHZ-SHW112YHA PUHZ-SHW140YHA


OUTDOOR UNIT

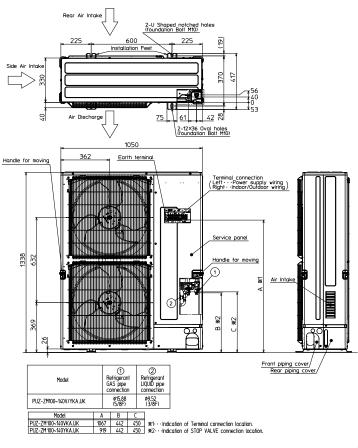
PUZ-ZM35VKA PUZ-ZM50VKA OUTDOOR UNIT



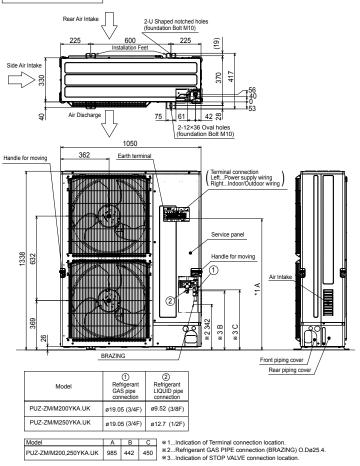


PUZ-ZM60VHA PUZ-ZM71VHA

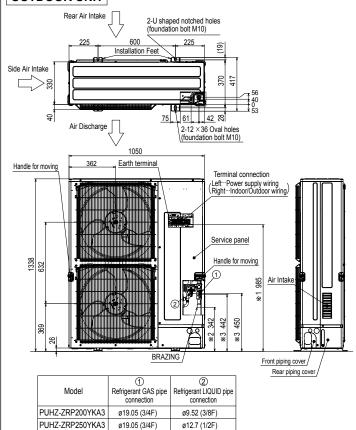
OUTDOOR UNIT



¾ 1 · · · Indication of STOP VALVE connection location.


PUZ-ZM100VKA PUZ-ZM125VKA PUZ-ZM140VKA PUZ-ZM100YKA PUZ-ZM125YKA PUZ-ZM140YKA

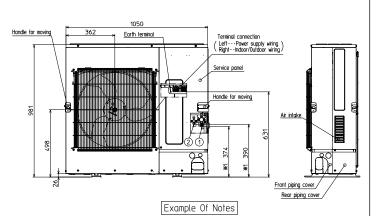
OUTDOOR UNIT


PUZ-ZM200YKA PUHZ-ZM250YKA

OUTDOOR UNIT

PUHZ-ZRP200YKA3 PUHZ-ZRP250YKA3

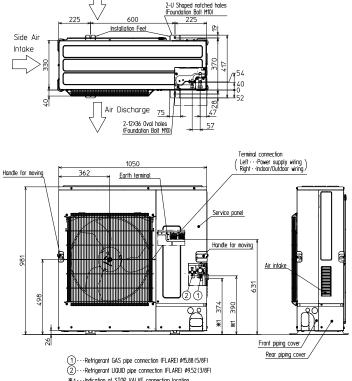
OUTDOOR UNIT


- *1...Indication of Terminal connection location
- **2---Refrigerant GAS pipe connection (BRAZING) O.Dø25.4.
 **3---Indication of STOP VALVE connection location.

Rear Air Intake

PUZ-M100VKA PUZ-M100YKA PUZ-M125VKA PUZ-M125YKA PUZ-M140VKA PUZ-M140YKA

OUTDOOR UNIT


Rear Air Intake 2-U Shaped notched holes (Foundation Bolt M10) 600 Installation Feet Side Air Intake Air Discharge 75 2-12×36 Oval holes (Foundation Bolt M10)

...Refrigerant GAS pipe connection (FLARE) Ø15.88 (5/8F) ...Refrigerant LIOUID pipe connection (FLARE) Ø9.52 (3/8F) *1...Indication of STOP VALVE connection location.

PUHZ-P100VKA PUHZ-P100YKA PUHZ-P125VKA PUHZ-P125YKA PUHZ-P140VKA PUHZ-P140YKA

OUTDOOR UNIT

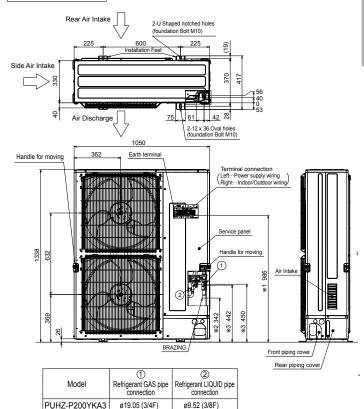
PUZ-M200YKA PUZ-M250YKA **OUTDOOR UNIT**

PUZ-ZM/M250YKA.UK

ø19.05 (3/4F)

ø12.7 (1/2F)

A B C *1...Indication of Terminal connection location.


985 442 450 *2...Refrigerant GAS PIPE connection (BRAZING) O.Dø25.4.

*3...Indication of STOP VALVE connection location.

2-U Shaped notched holes (foundation Bolt M10) (19) Side Air Intake 417 > 28 370 8 2-12×36 Oval holes (foundation Bolt M10) 1050 362 Earth terminal Handle for moving (Terminal connection Left...Power supply wiring Right...Indoor/Outdoor wiring) Service panel 1338 Handle for moving Œ Air Intake 99 *3B Front piping cover Rear piping cover Refrigerant LIQUID pipe Model PUZ-ZM/M200YKA.UK ø9.52 (3/8F) ø19.05 (3/4F)

PUHZ-P200YKA3 PUHZ-P250YKA3

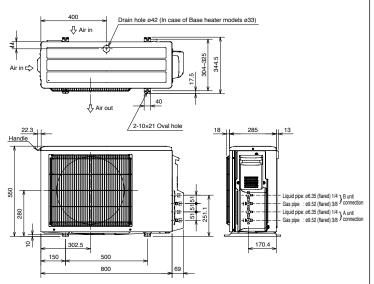
OUTDOOR UNIT

ø12.7 (1/2F)

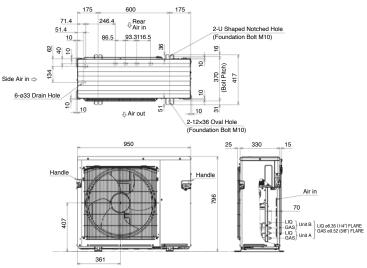
PUHZ-P250YKA3

*1--Indication of Terminal connection location.
*2--Refrigerant GAS pipe connection (BRAZING) O.Dø25.4.
*3--Indication of STOP VALVE connection location.

ø19.05 (3/4F)

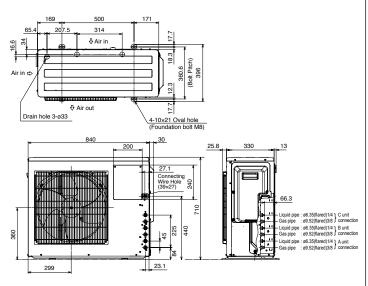

- Unit: mm

 MXZ-2D33VA
 MXZ-2D42VA2
 MXZ-2D53VA2
 MXZ-2D53VAH2

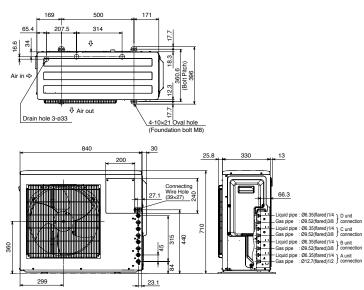

 MXZ-2DM40VA
 MXZ-2HA40VF
 MXZ-2HA50VF

 MXZ-2F33VF3
 MXZ-2F42VF3
 MXZ-2F53VF3
 MXZ-2F53VFH3

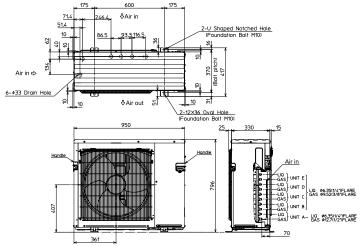
OUTDOOR UNIT



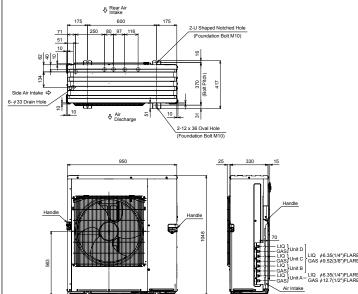
MXZ-2E53VAHZ MXZ-2F53VFHZ OUTDOOR UNIT

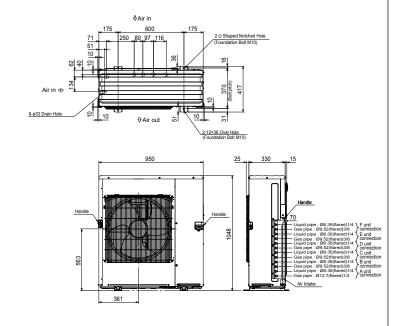

MXZ-3E54VA MXZ-3E68VA MXZ-3DM50VA MXZ-3HA50VF MXZ-3F54VF3 MXZ-3F68VF3

OUTDOOR UNIT

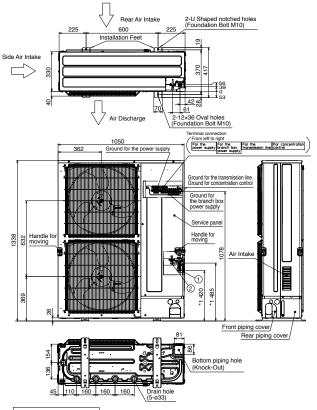


MXZ-4E72VA MXZ-4F72VF3 MXZ-4F80VF3


OUTDOOR UNIT


MXZ-4E83VA MXZ-5E102VA MXZ-4F83VF MXZ-5F102VF OUTDOOR UNIT

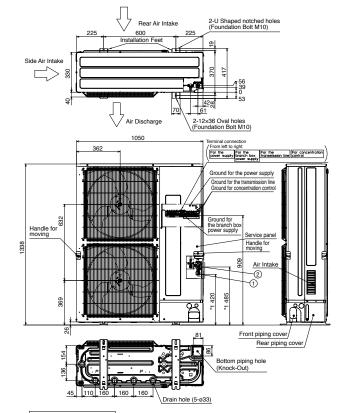
MXZ-4E83VAHZ MXZ-4F83VFHZ OUTDOOR UNIT



MXZ-6D122VA2 MXZ-6F122VF OUTDOOR UNIT

PUMY-P112/125/140VKM5(-BS)

OUTDOOR UNIT

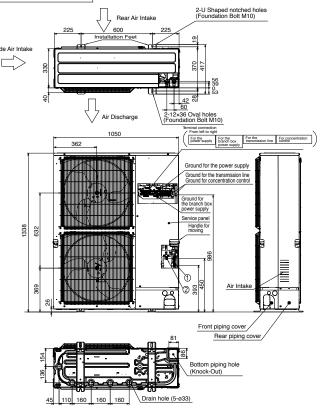


Example of Notes

Refrigerant GAS pipe connection (FLARE) ø15.88 (5/8F)
 Refrigerant LIQUID pipe connection (FLARE) ø9.52 (3/8F)
 Indication of STOP VALVE connection location.

PUMY-P112/125/140YKM(E)4(-BS)

OUTDOOR UNIT

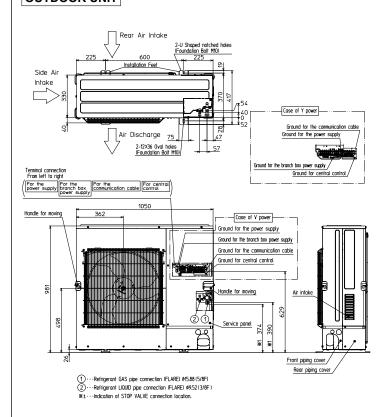


Example of Notes

- Refrigerant GAS pipe connection (FLARE) ø15.88 (5/8F)
 Refrigerant LIQUID pipe connection (FLARE) ø9.52 (3/8F)
 Indication of STOP VALVE connection location.

PUMY-P200YKM2(-BS)

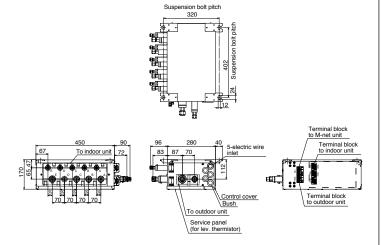
OUTDOOR UNIT



Example of Notes

- -- Refrigerant GAS pipe connection (FLARE) ø19.05 (3/4F)
 -- Refrigerant LIQUID pipe connection (FLARE) ø9.52 (3/8F)
 -- Indication of STOP VALVE connection location.

PUMY-SP112/125/140VKM(-BS) PUMY-SP112/125/140YKM(-BS)

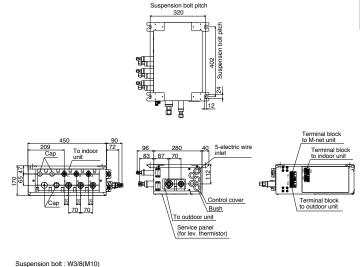

OUTDOOR UNIT

PAC-MK54BC

Suspension bolt: W3/W8 (M10)

Branch box

Suspension bolt : W3/8(M10) Refrigerant pipe flared connection


PAC-MK34BC

Suspension bolt: W3/W8 (M10)

Refrigerant pipe flared connection

| A B C | Liquid pipe | 1/4F | 1/4F | 1/4F | Gas pipe | 3/8F | 3/8F | 3/8F |

Branch box

To outdoor unit 3/8F 5/8F

Piping Installation

M SERIES

Single type

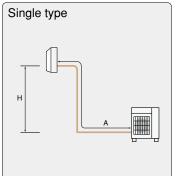
Series	Class	Maximum Piping Length (m)	Maximum Height Difference (m)	Maximum Number of Bends
Series	<outdoor unit=""></outdoor>	Total length (A)	Outdoor unit - Indoor unit (H)	Total number
MSZ-L	25 / 35	20	12	10
	50	20	12	10
	60	30	15	10
MSZ-FT	25	20	12	10
	35 / 50	30	15	10
MSZ-A	15 / 25 / 35 / 42 / 50	20	12	10
	60 / 71	30	15	10
MSZ-EF	25 / 35 / 42	20	12	10
	50	30	15	10
MSZ-BT	20 / 25 / 35 / 50	20	12	10
MSZ-HR	25 / 35 / 42 / 50	20	12	10
	60 / 71	30	15	10
MSY-TP	35 / 50	20	12	10
MSZ-F MFZ	25 / 35	20	12	10
WIF Z	50	30	15	10
MSZ-S	25 / 35 / 42	20	12	10
	50 / 60	30	15	10
MSZ-G	60 / 71	30	15	
MSZ-W MSZ-D	25 / 35	20	12	10
MSZ-HJ	25 / 35 / 50	20	12	10
	60 / 71	30	15	10

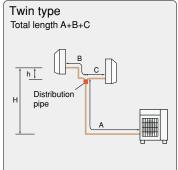
S SERIES & P SERIES

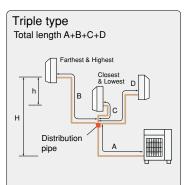
Single type

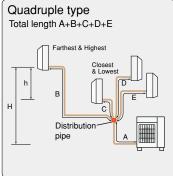
O-d-	Class	Maximum Piping Length (m)	Maximum Height Difference (m)	Maximum Number of Bends
Series	<outdoor unit=""></outdoor>	Total length (A)	Outdoor unit - Indoor unit (H)	Total number
ZUBADAN (PUHZ-SHW)	80 / 112 / 140	75	30	15
Power Inverter (PUZ-ZM)	35 / 50	50	30	15
	60 / 71	55	30	15
	100 / 125 / 140	100	30	15
Power Inverter (PUHZ-ZRP)	35 / 50 / 60 / 71	50	30	15
	100 / 125 / 140	75	30	15
	200 / 250	100	30	15
Standard Inverter (PUZ-M & SUZ-M)	25 / 35	20	12	10
	50 / 60 / 71	30	30	10
	100	55	30	45
	125 / 140	65	30	15
Standard Inverter (PUHZ-P & SUZ-KA)	25 / 35	20	12	10
	50 / 60 / 71	30	30	10
	100 / 125 / 140	50	30	15
	200 / 250	70	30	15

Twin type


		Ma	Maximum Piping Length (m)			Maximum Height Difference (m)	
Series	Class <outdoor unit=""></outdoor>	Total length A+B+C	Pipe length difference from distribution pipe B-C	Indoor unit - Distribution pipe B	Outdoor unit - Indoor unit H	Indoor unit - Indoor unit h	Total number
ZUBADAN (PUHZ-SHW)	80 / 112 / 140	75	8	20	30	1	15
Power Inverter (PUZ-ZM)	71	55	8	20	30	1	15
	100 / 125 / 140	100	8	20	30	1	15
	200 / 250						
Power Inverter (PUHZ-ZRP)	71	50	8	20	30	1	15
	100 / 125 / 140	75	8	20	30	1	15
	200 / 250	100	8	30	30	1	15
Standard Inverter (PUZ-M)	100	55					
	125 / 140	65	8	20	30	1	15
	200 / 250						
Standard Inverter (PUHZ-P)	100 / 125 / 140	50	8	20	30	1	15
	200 / 250	70	8	30	30	1	15

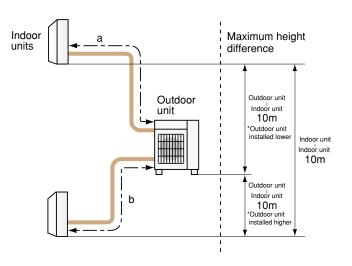

Triple type


		Maximum Piping Length (m)			Maximum Height Difference (m)		Maximum Number of Bends
Series	Class <outdoor unit=""></outdoor>	Total length A+B+C+D	Pipe length difference from distribution pipe B-C	Indoor unit - Distribution pipe B	Outdoor unit - Indoor unit H	Indoor unit - Indoor unit h	Total number
Power Inverter (PUZ-ZM)	140	100	8	20	30	1	15
	200 / 250						
Power Inverter (PUHZ-ZRP)	140	75	8	20	30	1	15
	200 / 250	100	8	30	30	1	15
Standard Inverter (PUZ-M)	140	65	8	20	30	1	15
	200 / 250						
Standard Inverter (PUHZ-P)	140	50	8	20	30	1	15
	200 / 250	70	8	28	30	1	15


Quadruple type

		Maximum Piping Length (m)			Maximum Height Difference (m)		Maximum Number of Bends
Series	Class <outdoor unit=""></outdoor>	Total length A+B+C+D+E	Pipe length difference from distribution pipe B-C	Indoor unit - Distribution pipe B	Outdoor unit - Indoor unit H	Indoor unit - Indoor unit h	Total number
Power Inverter (PUZ-ZM, PUHZ-ZRP)	200 / 250	100	8	30	30	1	15
Standard Inverter (PUZ-M, PUHZ-P)	200 / 250	70	8	22	30	1	15

MXZ SERIES


MXZ-2D33VA, MXZ-2F33VF3

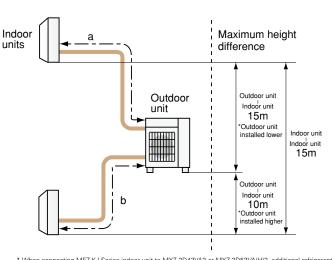
Maximum Piping Length				
Outdoor unit - Indoor unit (a,b)	15m			
Total length (a+b)	20m			

Maximum Number of Bends	
Outdoor unit - Indoor unit (a,b)	15
Total number (a+b)	20

^{*} When connecting MFZ-KJ Series indoor unit, additional refrigerant is required. For details, please contact Mitsubishi Electric.

Regarding MXZ-2D33, the second unit should be a different type in the case of selecting one MFZ-KJ.

MXZ-2D42VA2, MXZ-2F42VF3

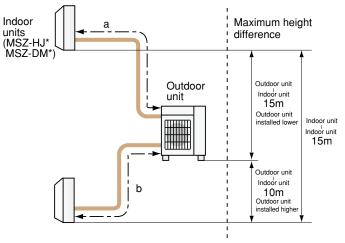

Maximum Piping Length				
Outdoor unit - Indoor unit (a,b)	20m			
Total length (a+b)	30m			

Maximum Number of Bends	
Outdoor unit - Indoor unit (a,b)	20
Total number (a+b)	30

MXZ-2D53VA(H)2, MXZ-2E53VAHZ, MXZ-2F53VF(H)3

Maximum Piping Length				
Outdoor unit - Indoor unit (a,b) 20m				
Total length (a+b)	30m			

Maximum Number of Bends	
Outdoor unit - Indoor unit (a,b)	20
Total number (a+b)	30

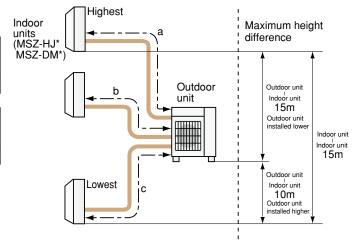

* When connecting MFZ-KJ Series indoor unit to MXZ-2D42VA2 or MXZ-2D53VA(H)2, additional refrigerant is required. For details, please contact Mitsubishi Electric.

MXZ SERIES

MXZ-2DM40VA, MXZ-2HA40VF, MXZ-2HA50VF

Maximum Piping Length	
Outdoor unit - Indoor unit (a,b)	20m
Total length (a+b)	30m

Maximum Number of Bends	
Outdoor unit - Indoor unit (a,b)	20
Total number (a+b)	30



*Only MSZ-HJ and DM model is connectable.

MXZ-3DM50VA, MXZ-3HA50VF

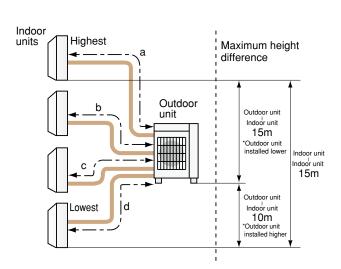
Maximum Piping Length	
Outdoor unit - Indoor unit (a,b,c)	25m
Total length (a+b+c)	50m

Maximum Number of Bends	
Outdoor unit - Indoor unit (a,b,c)	25
Total number (a+b+c)	50

*Only MSZ-HJ and DM model is connectable.

MXZ-4E72VA, MXZ-4F72VF3

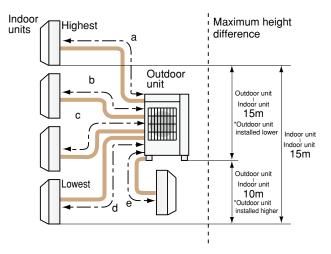
Maximum Piping Length	
Outdoor unit - Indoor unit (a,b,c,d)	25m
Total length (a+b+c+d)	60m


Maximum Number of Bends	
Outdoor unit - Indoor unit (a,b,c,d)	25
Total number (a+b+c+d)	60

^{*} When connecting MFZ-KJ Series indoor unit, additional refrigerant is required. For details, please contact Mitsubishi Electric.

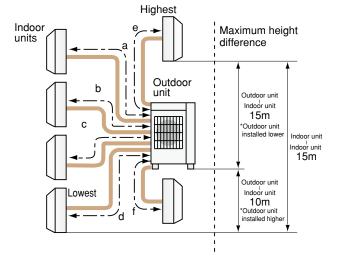
MXZ-4E83VA, MXZ-4E83VAHZ

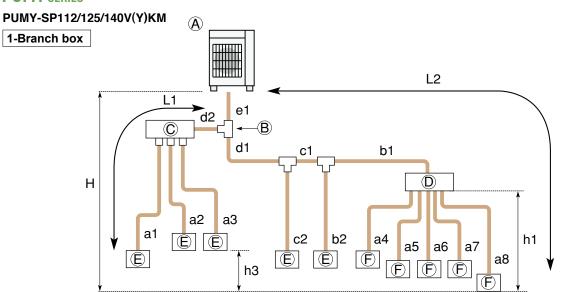
Maximum Piping Length	
Outdoor unit - Indoor unit (a,b,c,d)	25m
Total length (a+b+c+d)	70m


Maximum Number of Bends	
Outdoor unit - Indoor unit (a,b,c,d)	25
Total number (a+b+c+d)	70

MXZ-5E102VA, MXZ-5F102VA

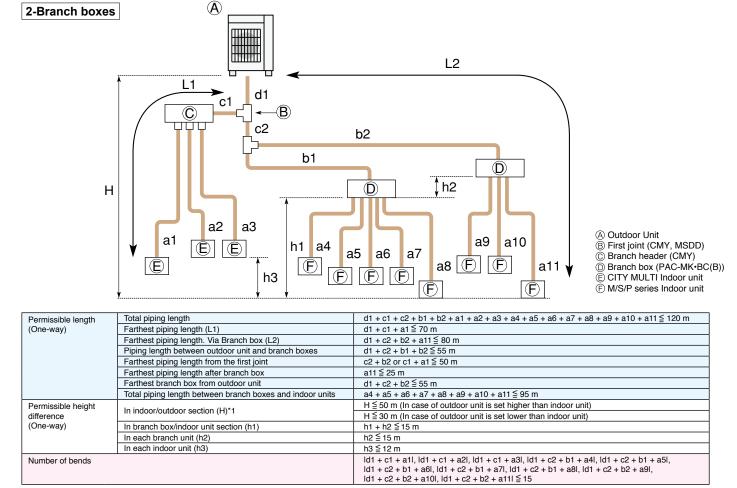
Maximum Piping Length	
Outdoor unit - Indoor unit (a,b,c,d,e)	25m
Total length (a+b+c+d+e)	80m

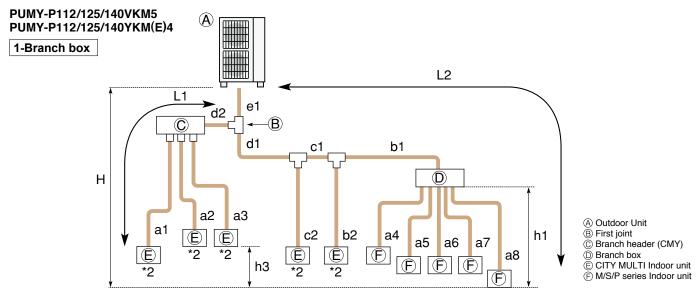

Maximum Number of Bends	
Outdoor unit - Indoor unit (a,b,c,d,e)	25
Total number (a+b+c+d+e)	80


MXZ-6D122VA2, MXZ-6F122VF

Maximum Piping Length	
Outdoor unit - Indoor unit (a,b,c,d,e,f)	25m
Total length (a+b+c+d+e+f)	80m

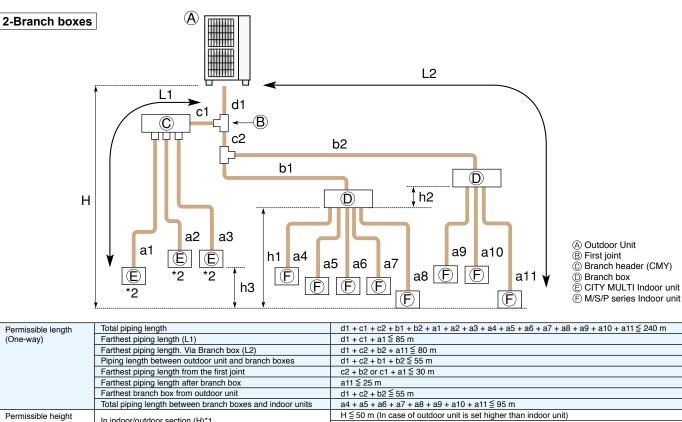
Maximum Number of Bends	
Outdoor unit - Indoor unit (a,b,c,d,e,f)	25
Total number (a+b+c+d+e+f)	80


PUMY SERIES


- (A) Outdoor Unit
- B First joint (CMY, MSDD)
- © Branch header (CMY)
- Branch box (PAC-MK•BC(B))
- © CITY MULTI Indoor unit

Permissible length	Total piping length	$e1 + d1 + d2 + c1 + c2 + b1 + b2 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 \le 120 \text{ m}$				
(One-way)	Farthest piping length (L1)	e1 + d2 + a1 or e1 + d1 + c1 + b2 ≦ 70 m				
	Farthest piping length. Via Branch box (L2)	e1 + d1 + c1 + b1 + a8 ≦ 50 m				
	Piping length between outdoor unit and branch box	e1 + d1 + c1 + b1 ≦ 55 m				
	Farthest piping length from the first joint	d1 + c1 + b1 or d1 + c1 + b2 ≤ 50 m				
	Farthest piping length after branch box	a8≦ 25 m				
	Total piping length between branch boxes and indoor units	a4 + a5 + a6 + a7 + a8 ≦ 95 m				
Permissible height	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H ≦ 50 m (In case of outdoor unit is set higher than indoor unit)				
difference (One-way)	In indoor/outdoor section (H)*1	H ≦ 30 m (In case of outdoor unit is set lower than indoor unit)				
	In branch box/indoor unit section (h1)	h1≦15 m				
	In each indoor unit (h3)	h3≦12 m				
Number of bends		le1 + d2 + a1l, le1 + d2 + a2l, le1 + d2 + a3l, le1 + d1 + c2l, le1 + d1 + c1 + b2l,				
		le1 + d1 + c1 + b1 + a4l, le1 + d1 + c1 + b1 + a5l, le1 + d1 + c1 + b1 + a6l,				
		$ e1 + d1 + c1 + b1 + a7 $, $ e1 + d1 + c1 + b1 + a8 \le 15$				

*1: Branch box should be placed within the level between the outdoor unit and indoor units.



^{*1:} Branch box should be placed within the level between the outdoor unit and indoor units.

Permissible length	Total piping length	e1 + d1 + d2 + c1 + c2 + b1 + b2 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 ≦ 300 m				
(One-way)	Farthest piping length (L1)	e1 + d2 + a1 or e1 + d1 + c1 + b2 ≦ 85 m				
	Farthest piping length. Via Branch box (L2)	e1 + d1 + c1 + b1 + a8 ≦ 80 m				
	Piping length between outdoor unit and branch box	e1 + d1 + c1 + b1 ≦ 55 m				
	Farthest piping length from the first joint	d1 + c1 + b1 or d1 + c1 + b2 ≤ 30 m				
	Farthest piping length after branch box	a8≦25 m				
	Total piping length between branch boxes and indoor units	a4 + a5 + a6 + a7 + a8 ≦ 95 m				
Permissible height	In indoor/outdoor section (H)*1	H ≦ 50 m (In case of outdoor unit is set higher than indoor unit)				
difference (One-way)		H ≤ 40 m (In case of outdoor unit is set lower than indoor unit)				
	In branch box/indoor unit section (h1)	h1 ≦ 15 m				
	In each indoor unit (h3)	h3≦12 m				
Number of bends		le1 + d2 + a1l, le1 + d2 + a2l, le1 + d2 + a3l, le1 + d1 + c2l, le1 + d1 + c1 + b2l,				
		le1 + d1 + c1 + b1 + a4l, le1 + d1 + c1 + b1 + a5l, le1 + d1 + c1 + b1 + a6l,				
		le1 + d1 + c1 + b1 + a7l, le1 + d1 + c1 + b1 + a8l ≦15				

- *1: Branch box should be placed within the level between the outdoor unit and indoor units.
 *2: PKFY and PFFY Series cannot be connected.

h1 + h2 ≦ 15 m h2 ≦ 15 m

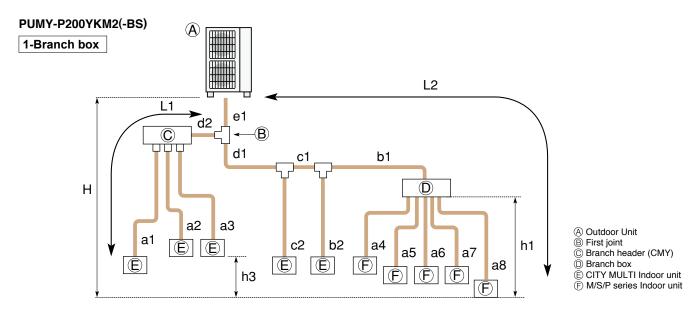
h3 ≦ 12 m

H ≤ 40 m (In case of outdoor unit is set lower than indoor unit)

 $\begin{array}{l} | d1+c1+a1|, | d1+c1+a2|, | d1+c1+a3|, | d1+c2+b1+a4|, | d1+c2+b1+a5|, \\ | d1+c2+b1+a6|, | d1+c2+b1+a7|, | d1+c2+b1+a8|, | d1+c2+b2+a9|, \\ | d1+c2+b2+a10|, | d1+c2+b2+a11| \leqq 15 \\ \end{array}$

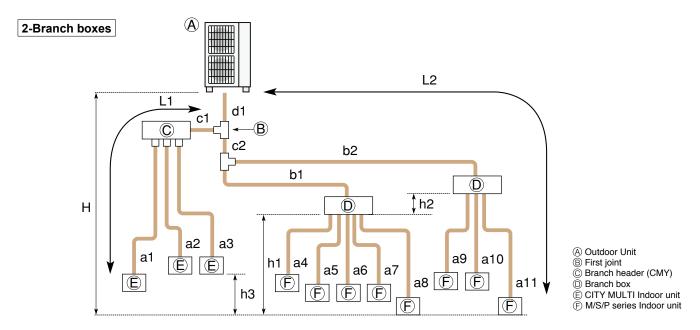
*1: Branch box should be placed within the level between the outdoor unit and indoor units.
*2: PKFY and PFFY Series cannot be connected.

In indoor/outdoor section (H)*1


In each branch unit (h2) In each indoor unit (h3)

In branch box/indoor unit section (h1)

difference


(One-way)

Number of bends

Permissible length	Total piping length	e1 + d1 + d2 + c1 + c2 + b1 + b2 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 ≦ 150 m				
(One-way)	Farthest piping length (L1)	e1 + d2 + a1 or e1 + d1 + c1 + b2 ≤ 80 m				
	Farthest piping length. Via Branch box (L2)	e1 + d1 + c1 + b1 + a8 ≦ 80 m				
	Piping length between outdoor unit and branch box	e1 + d1 + c1 + b1 ≦ 55 m				
	Farthest piping length from the first joint	d1 + c1 + b1 or d1 + c1 + b2 ≦ 30 m				
	Farthest piping length after branch box	a8≦25 m				
	Total piping length between branch boxes and indoor units	a4 + a5 + a6 + a7 + a8 ≦ 95 m				
Permissible height	In indoor/outdoor section (H)*1	H ≦ 50 m (In case of outdoor unit is set higher than indoor unit)				
difference (One-way)	III IIIdooi/outdoor section (H) 1	H ≦ 40 m (In case of outdoor unit is set lower than indoor unit)				
	In branch box/indoor unit section (h1)	h1 ≦ 15 m				
	In each indoor unit (h3)	h3≦12 m				
Number of bends		le1 + d2 + a1 , le1 + d2 + a2 , le1 + d2 + a3 , le1 + d1 + c2 , le1 + d1 + c1 + b2 , le1 + d1 + c1 + b1 + a4 , le1 + d1 + c1 + b1 + a5 , le1 + d1 + c1 + b1 + a6 , le1 + d1 + c1 + b1 + a7 , le1 + d1 + c1 + b1 + a8 \leq 15				

^{*1:} Branch box should be placed within the level between the outdoor unit and indoor units.

Permissible length	Total piping length	$d1 + c1 + c2 + b1 + b2 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 + a11 \le 150 \text{ m}$				
(One-way)	Farthest piping length (L1)	d1 + c1 + a1 ≦ 80 m				
	Farthest piping length. Via Branch box (L2)	d1 + c2 + b2 + a11 ≦ 80 m				
	Piping length between outdoor unit and branch boxes	d1 + c2 + b1 + b2 ≦ 55 m				
	Farthest piping length from the first joint	c2 + b2 or c1 + a1 ≦ 30 m				
	Farthest piping length after branch box	a11 ≦ 25 m				
	Farthest branch box from outdoor unit	d1 + c2 + b2 ≦ 55 m				
	Total piping length between branch boxes and indoor units	a4 + a5 + a6 + a7 + a8 + a9 + a10 + a11 ≦ 95 m				
Permissible height	In indeer/outdeer ceetien // I*1	H ≦ 50 m (In case of outdoor unit is set higher than indoor unit)				
difference	In indoor/outdoor section (H)*1	H ≦ 40 m (In case of outdoor unit is set lower than indoor unit)				
(One-way)	In branch box/indoor unit section (h1)	h1 + h2 ≦ 15 m				
	In each branch unit (h2)	h2 ≦ 15 m				
	In each indoor unit (h3)	h3 ≦ 12 m				
Number of bends		ld1 + c1 + a1l, ld1 + c1 + a2l, ld1 + c1 + a3l, ld1 + c2 + b1 + a4l, ld1 + c2 + b1 + a5l,				
		ld1 + c2 + b1 + a6l, ld1 + c2 + b1 + a7l, ld1 + c2 + b1 + a8l, ld1 + c2 + b2 + a9l,				
		$ d1 + c2 + b2 + a10 $, $ d1 + c2 + b2 + a11 \le 15$				

^{*1:} Branch box should be placed within the level between the outdoor unit and indoor units.

Explanation of Terminology

Maximum piping length:

This is the maximum allowable length of the refrigerant piping. The amount of refrigerant pipe used cannot be longer than the length specified.

Total length:

The maximum allowable combined length of all the refrigerant piping between the outdoor unit and indoor unit(s).

Outdoor Unit - Indoor Unit:

The maximum allowable length of the refrigerant piping between the outdoor unit and indoor units installed when multiple units are connected to a single outdoor unit. This distance limitation refers to the maximum length between the outdoor unit and the farthest indoor unit.

Pipe length difference from distribution pipe:

The maximum allowable difference in refrigerant piping length from the distribution pipe to the farthest indoor unit and from the distribution pipe to the closest indoor unit when multiple indoor units are connected to a single outdoor unit using a distribution pipe.

Indoor Unit - Distribution Pipe:

The maximum allowable length of the refrigerant piping between indoor units and the distribution pipe when multiple indoor units are connected to a single outdoor unit.

Maximum height difference:

This is the maximum allowable height difference. It is necessary to install the air conditioning system so that the height distance is no more than the difference specified. (Specified differences may vary if the outdoor unit is installed higher or lower than the indoor units).

Outdoor unit - Indoor unit:

The maximum allowable difference in height between the outdoor unit and indoor units when installed (when multiple indoor units are connected to a single outdoor unit, this distance limitation refers to the maximum height difference between the outdoor unit and an indoor unit).

Indoor unit - Indoor unit

The maximum allowable difference between the heights of indoor units when multiple indoor units are connected to a single outdoor unit.

Maximum number of bends:

This is the maximum allowable number of bends in the refrigerant piping. The total number of bends in the refrigerant piping used cannot exceed the number specified.

Total number:

The maximum allowable number of bends for all refrigerant piping between the outdoor unit and indoor units.

Outdoor unit - Indoor unit:

The maximum allowable number of bends between the outdoor unit and each indoor unit when multiple indoor units are connected to a single outdoor unit.

Conditions for specifications

Temperature conditions are based on JIS B8616.

Cooling	Indoor	27°C DB, 19°C WB
Cooling	Outdoor	35°C DB, 24°C WB
Heating	Indoor	20°C DB
	Outdoor	7°C DB, 6°C WB

Refrigerant piping length; 5m

The figures for total input are based on the following voltages.

Series	Indoor unit	Outdoor unit
M Series S Series P Series (except for PEA) MXZ Series POWERFUL HEATING Series	-	VG,VE,VA,VHA,VKA:230V/Single phase/50Hz YA,YHA,YKA:400V/Three phase/50Hz
PEA Series	400V/Three phase/50Hz	400V/Three phase/50Hz

Sound pressure level

- The sound pressure measurement is conducted in an anechoic chamber.
- The actual sound level depends on the distance from the unit and the acoustic environment.

How to read a model name

1) M & S Series

., 🔍	2 001100
M	M: M Series S: S Series
S	"S"= Wall-mounted , "F"= Compact floor-standing , "E"= Compact ceiling-concealed ,
3	"L"= 4- or 1-way cassette , "U"= Outdoor unit
Z	"Z"= Inverter heat pump , "H"= Fixed-speed heat pump , "blank"= Cooling only of Non-inverter , "Y"= Cooling only of inverter
_	
F	Series
Н	Generation
25	Rated cooling capacity (kW base)
V	230V / Single phase / 50Hz
	"A"= R410A with new A control , "B"= R410A with conventional control ,
Е	"E"= R410A with new A control & ErP correspondance , "G"=R32 with new A control & ErP correspondance ,
	"F"= R32 with new A control
	"HZ"= Hyper Heating model , "H"= Anti-freeze heater equipped model ,
HZ	"S"= Silver indoor unit , "W"= White/Natural White indoor unit , "B"= Black/Onyx Black indoor unit ,
	"V"= Pearl White indoor unit , "R"= Ruby Red indoor unit

2) P Series

P	P Series
U	"K"= Wall-mounted , "S"= Floor-standing , "L"= 4-way cassette , "E"= Ceiling-concealed ,
	"C"= Ceiling-suspended, "U"= Outdoor unit
Н	"H"= For heating and cooling
Z	"Z"= Inverter
ZM/M/ZRP/RP/P	"ZM"= R32 Eco-conscious Power Inverter , "M"= R32 &R410A
	"ZRP"/"RP"= R410A & cleaning-free pipe reuse , "P"=R410A
SHW	"SH"= Powerful heating ZUBADAN , "W"= can be used as air to water application
71	Rated cooling capacity (kW base)
V	"V"= 230V / Single phase / 50Hz , "Y"= 400V / Three phase / 50Hz

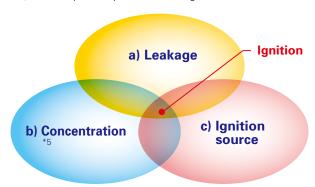
3) MXZ Series

Generation
"A"= A control

•, := :	201100
М	M Series
Х	Multi-system outdoor unit (heat pump)
Z	Inverter heat pump
_	
4	Maximum number of connectable indoor units
D/E/F/HJ/DM	Generation / Type
72	Rated cooling capacity (kW base)
V	"V"= 230V / Single phase / 50Hz
Α	"A"= R410A with new A control
HZ	"HZ"= Hyper Heating model , "H"= Anti-freeze heater equipped model

Refrigerant Amount

M/S/P/Multi/Zubadan/ATW


		Refrige	Refrigerant		Pre-charged		Max. added	
	Model Name			Weight	CO ₂	Weight	CO ₂	
			GWP	[kg]	equivalent [t]	[kg]	equivaler [t]	
	MUZ-LN25VG	R32	675	1.00	0.68	0.26	0.18	
	MUZ-LN25VG2 MUZ-LN35VG	R32 R32	675 675	1.00	0.54 0.68	0.20	0.135 0.18	
	MUZ-LN35VG2	R32	675	0.85	0.57	0.20	0.14	
	MUZ-LN50VG	R32	675	1.25	0.85	0.26	0.18	
	MUZ-LN50VG2	R32	675 675	1.25	0.85	0.10	0.07	
	MUZ-LN60VG MUZ-LN25VGHZ	R32 R32	675	1.45	0.98	0.46	0.32	
	MUZ-LN35VGHZ	R32	675	1.00	0.68	0.26	0.18	
	MUZ-LN50VGHZ	R32	675	1.45	0.98	0.46	0.32	
	MUZ-FT25VGHZ MUZ-FT35VGHZ	R32 R32	675 675	0.85	0.58 0.65	0.25	0.17	
	MUZ-FT50VGHZ	R32	675	0.95	0.65	0.45	0.31	
	MUZ-AP15VG	R32	675	0.49	0.34	0.26	0.18	
	MUZ-AP20VG MUZ-AP25VG	R32 R32	675 675	0.55	0.37	0.26	0.18	
	MUZ-AP35VG	R32	675	0.55	0.37	0.26	0.18	
	MUZ-AP42VG	R32	675	0.70	0.47	0.26	0.18	
	MUZ-AP50VG MUZ-AP60VG	R32 R32	675 675	1.00	0.68	0.26	0.18	
	MUZ-AP71VG	R32	675	1.50	1.02	0.30	0.20	
	MUZ-AP25VGH	R32	675	0.55	0.37	0.26	0.18	
	MUZ-AP35VGH	R32	675 675	0.55	0.37	0.26	0.18 0.18	
	MUZ-AP42VGH MUZ-AP50VGH	R32 R32	675 675	1.00	0.47	0.26	0.18	
	MUZ-EF25VG(H)	R32	675	0.62	0.42	0.26	0.18	
	MUZ-EF35VG(H)	R32	675	0.74	0.50	0.26	0.18	
	MUZ-EF42VG MUZ-EF50VG	R32 R32	675 675	0.74 1.05	0.50 0.71	0.26	0.18	
	MUZ-BT20VG	R32	675	0.45	0.30	0.46	0.32	
	MUZ-BT25VG	R32	675	0.50	0.34	0.26	0.18	
	MUZ-BT35VG MUZ-BT50VG	R32 R32	675 675	0.50	0.34	0.26	0.18	
	MUZ-HR25VF	R32	675	0.70	0.47	0.26	0.18	
	MUZ-HR35VF	R32	675	0.45	0.30	0.26	0.18	
	MUZ-HR42VF	R32	675 675	0.70	0.47	0.26	0.18	
	MUZ-HR50VF MUZ-HR60VF	R32 R32	675	1.05	0.54	0.26	0.18	
	MUZ-HR71VF	R32	675	1.05	0.71	0.46	0.32	
	MUY-TP35VF	R410A	2088	0.85	0.57	0.13	0.09	
	MUY-TP50VF MUZ-FH25VE	R410A R410A	2088	0.85 1.15	0.57 2.41	0.13	0.09	
	MUZ-FH35VE	R410A	2088	1.15	2.41	0.39	0.82	
	MUZ-FH50VE	R410A	2088	1.55	3.24	0.46	0.97	
	MUZ-FH25VEHZ MUZ-FH35VEHZ	R410A R410A	2088	1.15	2.41	0.39	0.82	
	MUZ-FH50VEHZ	R410A	2088	1.55	3.24	0.46	0.97	
M-Series	MUZ-SF25VE(H)	R410A	2088	0.70	1.47	0.39	0.82	
	MUZ-SF35VE(H) MUZ-SF42VE(H)	R410A R410A	2088	0.80	1.68	0.39	0.82	
	MUZ-SF50VE(H)	R410A	2088	1.15	3.24	0.39	0.82	
	MUZ-GF60VE	R410A	2088	1.55	3.24	0.40	0.84	
	MUZ-GF71VE	R410A	2088	1.90	3.97 1.47	1.10	2.30	
	MUZ-WN25VA MUZ-WN35VA	R410A R410A	2088	0.70	1.47	0.26	0.55 0.55	
	MUZ-DM25VA	R410A	2088	0.70	1.47	0.26	0.55	
	MUZ-DM35VA	R410A	2088	0.72	1.51	0.26	0.55	
	MUZ-HJ25VA MUZ-HJ35VA	R410A R410A	2088 2088	0.70	1.47 1.51	0.26	0.55 0.55	
	MUZ-HJ35VA MUZ-HJ50VA	R410A R410A	2088	1.15	2.41	0.26	0.55	
	MUZ-HJ60VA	R410A	2088	1.80	3.76	0.46	0.97	
	MUZ-HJ71VA	R410A	2088	1.80	3.76	0.46	0.97	
	MUFZ-KJ25VE MUFZ-KJ35VE	R410A R410A	2088	1,1	2.30	0.39	0.82	
	MUFZ-KJ50VE	R410A	2088	1.50	3.14	0.46	0.97	
	MUFZ-KJ25VEHZ	R410A	2088	1,1	2.30	0.39	0.82	
	MUFZ-KJ35VEHZ MUFZ-KJ50VEHZ	R410A R410A	2088	1,1	2.30 3.14	0.39	0.82	
	MXZ-2D33VA	R410A	2088	1.15	2.72	0.0	0.00	
	MXZ-2D42VA2	R410A	2088	1.3	2.72	0.2	0.42	
	MXZ-2D53VA(H)2 MXZ-3E54VA	R410A R410A	2088	1.3 2.7	2.72 5.64	0.2	0.42	
	MXZ-3E68VA	R410A R410A	2088	2.7	5.64	0.2	0.42	
	MXZ-4E72VA	R410A	2088	2.7	5.64	0.4	0.84	
	MXZ-4E83VA	R410A	2088	2.99	6.25	0.9	1.88	
	MXZ-5E102VA MXZ-6D122VA	R410A R410A	2088	2.99 4.0	6.25 8.36	1.6	3.35 2.09	
	MXZ-2F33VF3	R32	675	0.8	0.54	0.8	0.54	
	MXZ-2F42VF3	R32	675	1.0	0.675	1.0	0.675	
	MXZ-2F53VF(H)3 MXZ-3F54VF3	R32 R32	675 675	1.0 2.4	0.675 1.62	1.0 2.4	0.675 1.62	
	MXZ-3F68VF3	R32	675	2.4	1.62	2.4	1.62	
	MXZ-4F72VF3	R32	675	2.4	1.62	2.4	1.62	
	MXZ-4F80VF3	R32	675	2.4	1.62	2.4	1.62	
	MXZ-4F83VF MXZ-5F102VF	R32 R32	675 675	2.4	1.62 1.62	2.4	1.62 1.62	
	MXZ-6F122VF	R32	675	2.4	1.62	2.4	1.62	
	MXZ-2F53VFHZ	R32	675	2.4	1.62	2.4	1.62	
	MXZ-4F83VFHZ MXZ-2E53VAHZ	R32 R410A	675 2088	2.4	1.62 4.18	0.2	1.62 0.42	
	MXZ-4E83VAHZ	R410A R410A	2088	3.9	8.15	0.2	1.88	
	MXZ-2DM40VA	R410A	2088	0.95	1.99	0.2	0.42	
	MXZ-3DM50VA	R410A	2088	2.7	5.64	0.2	0.42	
	MXZ-2HA40VF MXZ-2HA50VF	R32 R32	675 675	0.9	0.61	0.9	0.61	
	MXZ-2HA50VF MXZ-3HA50VF	R32	675	1.4	0.95	1.6	1.08	

		Pofrin	orant	Pre-	charged	Max	k. added
	Model Name	Refrige	erant	qu	uantity CO ₂	qu	uantity CO ₂
			GWP	Weight [kg]	equivalent	Weight [kg]	equivalent
	SUZ-M25VA	R32	675	0.65	[t] 0.44	0.91	(t) 0.61
	SUZ-M35VA	R33	675	0.90	0.61	1.16	0.78
	SUZ-M50VA	R34	675	1.20	0.81	1.66	1.12
	SUZ-M60VA SUZ-M71VA	R35 R36	675 675	1.25	0.84	1.71 2.37	1.15 1.60
S-Series	SUZ-KA25VA6	R410A	2088	0.80	1.68	0.39	0.82
	SUZ-KA35VA6	R410A	2088	1.15	2.41	0.39	0.82
-	SUZ-KA50VA6 SUZ-KA60VA6	R410A R410A	2088	1.60	3.35 3.35	0.46	0.97
	SUZ-KA71VA6	R410A	2088	1.80	3.76	1.265	2.65
	PUZ-ZM35VKA	R32	675	2.0	1.35	0.3	0.20
	PUZ-ZM50VKA PUZ-ZM60VHA	R32	675 675	2.0	1.35 1.89	0.3	0.20
-	PUZ-ZM71VHA	R32	675	2.8	1.89	0.8	0.54
	PUZ-ZM100VKA	R32	675	4.0	2.70	2.8	1.89
	PUZ-ZM100YKA	R32	675	4.0	2.70	2.8	1.89
	PUZ-ZM125VKA PUZ-ZM125YKA	R32	675 675	4.0 4.0	2.70	2.8	1.89
	PUZ-ZM140VKA	R32	675	4.0	2.70	2.8	1.89
	PUZ-ZM140YKA	R32	675	4.0	2.70	2.8	1.89
	PUZ-ZM200YKA PUZ-ZM250YKA	R32	675 675	6.3 6.8	4.25 4.59	9.2	6.21
	PUHZ-ZRP35VKA2	R410A	2088	2.2	4.60	0.4	0.84
	PUHZ-ZRP50VKA2	R410A	2088	2.4	5.02	0.4	0.84
	PUHZ-ZRP60VHA2	R410A	2088	3.5	7.31	1.2	2.51
	PUHZ-ZRP71VHA2 PUHZ-ZRP100VKA3	R410A R410A	2088	3.5 5.0	7.31	1.2 2.4	2.51 5.02
	PUHZ-ZRP100YKA3	R410A	2088	5.0	10.44	2.4	5.02
	PUHZ-ZRP125VKA3	R410A	2088	5.0	10.44	2.4	5.02
	PUHZ-ZRP125YKA3 PUHZ-ZRP140VKA3	R410A R410A	2088	5.0 5.0	10.44	2.4	5.02
	PUHZ-ZRP140YKA3	R410A	2088	5.0	10.44	2.4	5.02
P-Series	PUHZ-ZRP200YKA3	R410A	2088	7.1	14.83	3.6	7.52
	PUHZ-ZRP250YKA3	R410A	2088	7.7	16.08	4.8	10.03
-	PUZ-M100VKA PUZ-M100YKA	R32	675 675	3.1	2.09	4.1	2.77
	PUZ-M125VKA	R32	675	3.6	2.43	5.0	3.38
	PUZ-M125YKA	R32	675	3.6	2.43	5.0	3.38
-	PUZ-M140VKA	R32	675	3.6	2.43	5.0	3.38
	PUZ-M140YKA PUZ-M200YKA	R32	675 675	3.6 5.6	2.43 3.78	5.0 7.2	3.38 4.86
	PUZ-M250YKA	R32	675	6.8	4.59	9.2	6.21
	PUHZ-P100VKA	R410A	2088	3.3	6.89	1.2	2.51
	PUHZ-P100YKA PUHZ-P125VKA	R410A R410A	2088	3.3	6.89 7.93	1.2	2.51
	PUHZ-P125YKA	R410A	2088	3.8	7.93	1.2	2.51
	PUHZ-P140VKA	R410A	2088	3.8	7.93	1.2	2.51
	PUHZ-P140YKA	R410A	2088	3.8	7.93	1.2	2.51
	PUHZ-P200YKA3 PUHZ-P250YKA3	R410A R410A	2088	6.5 7.7	13.58 16.08	3.6 4.8	7.52
	PUHZ-SHW112VHA	R410A	2088	5.5	11.49	2.4	5.02
	PUHZ-SHW112YHA	R410A	2088	5.5	11.49	2.4	5.02
	PUHZ-SHW140VHA PUHZ-SHW140YHA	R410A R410A	2088	5.5 5.5	11.49	2.4	5.02
	PUHZ-FRP71VHA	R410A	2088	3.8	7.94	1.8	3.76
	PUMY-SP112VKM(-BS)	R410A	2088	3.5	7.31	9.0	18.79
	PUMY-SP112YKM(-BS)	R410A	2088	3.5	7.31	9.0	18.79
	PUMY-SP125VKM(-BS) PUMY-SP125YKM(-BS)	R410A R410A	2088	3.5 3.5	7.31 7.31	9.0	18.79 18.79
	PUMY-SP125YRM(-BS)	R410A	2088	3.5	7.31	9.0	18.79
	PUMY-SP140YKM(-BS)	R410A	2088	3.5	7.31	9.0	18.79
PUMY	PUMY-P112VKM5(-BS)	R410A	2088	4.8	10.02	13.8	28.81
	PUMY-P125VKM5(-BS) PUMY-P140VKM5(-BS)	R410A R410A	2088	4.8 4.8	10.02 10.02	13.8 13.8	28.81
	PUMY-P112YKM(E)4(-BS)	R410A	2088	4.8	10.02	13.8	28.81
	PUMY-P125YKM(E)4(-BS)	R410A	2088	4.8	10.02	13.8	28.81
	PUMY-P140YKM(E)4(-BS)	R410A	2088	4.8	10.02 15.24	13.8	28.81 27.35
	PUMY-P200YKM2 (-BS) PUZ-WM50VHA	R410A R32	675	7.3 2.0	15.24	13.1	27.35
ATD 6 /	PUZ-WM60VAA	R32	675	2.2	1.49	-	-
ATW Packaged	PUZ-WM85V/YAA	R32	675	2.2	1.49	-	-
	PUZ-WM112V/YAA PUZ-HWM140V/YHA	R32	675 675	3.0	2.03 2.2275	-	-
		R32	675	1.2	0.81	0.4	0.27
	SUZ-SWM40VA				0.81	0.4	0.27
	SUZ-SWM60VA	R32	675	1.2			
	SUZ-SWM60VA SUZ-SWM80VA	R32	675	1.2	0.81	0.4	0.27
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA	R32 R32	675 675	1.2 1.3	0.81 0.8775	0.3	0.20
	SUZ-SWM60VA SUZ-SWM80VA	R32	675	1.2	0.81		
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM80V/YAA PUD-SWM100V/YAA PUD-SWM120V/YAA	R32 R32 R32 R32 R32	675 675 675 675 675	1.2 1.3 1.3 1.6 1.6	0.81 0.8775 0.8775 1.08 1.08	0.3 0.3 0.23 0.23	0.20 0.20 0.16 0.16
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM100V/YAA PUD-SWM1100V/YAA PUD-SWM120V/YAA PUD-SHWM60VAA	R32 R32 R32 R32 R32 R32	675 675 675 675 675 675	1.2 1.3 1.3 1.6 1.6 1.4	0.81 0.8775 0.8775 1.08 1.08 0.945	0.3 0.3 0.23 0.23 0.3	0.20 0.20 0.16 0.16 0.20
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM80V/YAA PUD-SWM100V/YAA PUD-SWM120V/YAA PUD-SHWM60VAA PUD-SHWM60VAA	R32 R32 R32 R32 R32 R32 R32	675 675 675 675 675 675 675	1.2 1.3 1.3 1.6 1.6 1.4 1.4	0.81 0.8775 0.8775 1.08 1.08 0.945	0.3 0.3 0.23 0.23 0.3 0.3	0.20 0.20 0.16 0.16 0.20 0.20
ATW Split	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM100V/YAA PUD-SWM1100V/YAA PUD-SWM120V/YAA PUD-SHWM60VAA	R32 R32 R32 R32 R32 R32	675 675 675 675 675 675	1.2 1.3 1.3 1.6 1.6 1.4	0.81 0.8775 0.8775 1.08 1.08 0.945	0.3 0.3 0.23 0.23 0.3	0.20 0.20 0.16 0.16 0.20
ATW Split	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM100V/AA PUD-SWM100V/AA PUD-SWM100V/AA PUD-SHWM60VAA PUD-SHWM60VAA PUD-SHWM100V/AA PUD-SHWM100V/AA PUD-SHWM120V/YAA PUD-SHWM120V/YAA	R32 R32 R32 R32 R32 R32 R32 R32 R32 R32	675 675 675 675 675 675 675 675 675	1.2 1.3 1.6 1.6 1.4 1.4 1.7 1.7	0.81 0.8775 0.8775 1.08 1.08 0.945 0.945 1.1475 1.1475	0.3 0.23 0.23 0.23 0.3 0.3 0.13 0.13	0.20 0.20 0.16 0.16 0.20 0.20 0.20 0.09 0.09
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM80V/YAA PUD-SWM100V/YAA PUD-SHWM60VAA PUD-SHWM60VAA PUD-SHWM80V/YAA PUD-SHWM100V/YAA PUD-SHWM100V/YAA PUD-SHWM100V/YAA PUD-SHWM140V/YAA PUD-SHWM140V/YAA PUD-SHWM140V/YAA	R32 R32 R32 R32 R32 R32 R32 R32 R32 R32	675 675 675 675 675 675 675 675 675 675	1.2 1.3 1.6 1.6 1.4 1.7 1.7 1.7	0.81 0.8775 0.8775 1.08 1.08 0.945 0.945 1.1475 1.1475 1.1475 6.27	0.3 0.23 0.23 0.3 0.3 0.3 0.13 0.13 0.13 1.8	0.20 0.20 0.16 0.16 0.20 0.20 0.09 0.09 0.09 3.76
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM100V/YAA PUD-SWM100V/YAA PUD-SWM120V/YAA PUD-SHWM60VAA PUD-SHWM80V/YAA PUD-SHWM100V/YAA PUD-SHWM100V/YAA PUD-SHWM100V/YAA PUD-SHWM120V/YAA PUD-SHWM140V/YAA PUD-SHWM140V/YAA PUHZ-SW75V/YAA PUHZ-SW75V/YAA	R32 R32 R32 R32 R32 R32 R32 R32 R32 R32	675 675 675 675 675 675 675 675 675 2088 2088	1.2 1.3 1.6 1.6 1.4 1.4 1.7 1.7 1.7 3.0	0.81 0.8775 0.8775 1.08 1.08 0.945 0.945 1.1475 1.1475 1.1475 6.27 8.77	0.3 0.3 0.23 0.23 0.3 0.13 0.13 0.13 1.8 1.6	0.20 0.20 0.16 0.16 0.20 0.20 0.09 0.09 0.09 3.76 3.76
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM80V/YAA PUD-SWM100V/YAA PUD-SHWM60VAA PUD-SHWM60VAA PUD-SHWM80V/YAA PUD-SHWM100V/YAA PUD-SHWM100V/YAA PUD-SHWM100V/YAA PUD-SHWM140V/YAA PUD-SHWM140V/YAA PUD-SHWM140V/YAA	R32 R32 R32 R32 R32 R32 R32 R32 R32 R32	675 675 675 675 675 675 675 675 675 2088 2088	1.2 1.3 1.6 1.6 1.4 1.7 1.7 1.7	0.81 0.8775 0.8775 1.08 1.08 0.945 0.945 1.1475 1.1475 1.1475 6.27	0.3 0.23 0.23 0.3 0.3 0.3 0.13 0.13 0.13 1.8	0.20 0.20 0.16 0.16 0.20 0.20 0.09 0.09 0.09 3.76
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM80V/YAA PUD-SWM100V/YAA PUD-SHWM120V/YAA PUD-SHWM60VAA PUD-SHWM100V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUHZ-SW75V/YAA PUHZ-SW100V/YAA PUHZ-SW100V/YAA PUHZ-SW100V/YAA PUHZ-SW100V/YAA PUHZ-SW100V/YAA PUHZ-SW100V/YAA	R32 R32 R32 R32 R32 R32 R32 R32 R32 R410A R410A R410A	675 675 675 675 675 675 675 675 675 2088 2088 2088 2088	1.2 1.3 1.6 1.6 1.4 1.7 1.7 1.7 3.0 4.2 4.6 7.1	0.81 0.8775 0.8775 1.08 1.08 0.945 0.945 1.1475 1.1475 1.1475 6.27 8.77 9.61 14.83 16.08	0.3 0.23 0.23 0.3 0.3 0.3 0.13 0.13 1.8 1.6 2.9 4.0 5.2	0.20 0.20 0.16 0.16 0.20 0.20 0.09 0.09 0.09 3.76 6.06 8.36 8.36
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM80VAA PUD-SWM100V/AA PUD-SWM100V/AA PUD-SWM100V/AA PUD-SHWM60VAA PUD-SHWM60VAA PUD-SHWM100V/AA PUD-SHWM100V/AA PUD-SHWM100V/AA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUHZ-SW750V/YAA PUHZ-SW160V/YAA PUHZ-SW160V/YAA PUHZ-SW160YKA PUHZ-SW100V/YAA	R32 R32 R32 R32 R32 R32 R32 R32 R32 R410A R410A R410A R410A R410A	675 675 675 675 675 675 675 675 675 2088 2088 2088 2088 2088	1.2 1.3 1.6 1.6 1.4 1.7 1.7 1.7 3.0 4.2 4.6 7.1 7.7	0.81 0.8775 0.8775 1.08 0.945 1.1475 1.1	0.3 0.23 0.23 0.3 0.3 0.3 0.13 0.13 1.8 1.6 2.9 4.0 5.2	0.20 0.20 0.16 0.16 0.20 0.20 0.09 0.09 3.76 3.76 6.06 8.36 8.36 2.93
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM60VAA PUD-SWM80V/AA PUD-SWM100V/YAA PUD-SWM100V/YAA PUD-SHWM60VAA PUD-SHWM80V/YAA PUD-SHWM100V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SWM125WYAA PUHZ-SW100V/YAA PUHZ-SW100V/YAA PUHZ-SW160VKA PUHZ-SW160VKA PUHZ-SW100V/KA PUHZ-SHW80V/YAA PUHZ-SHW80V/YAA	R32 R32 R32 R32 R32 R32 R32 R32 R32 R32	675 675 675 675 675 675 675 675 675 2088 2088 2088 2088 2088 2088 2088	1.2 1.3 1.6 1.6 1.4 1.7 1.7 1.7 3.0 4.2 4.6 4.6	0.81 0.8775 0.8775 1.08 1.08 0.945 1.1475 1.1475 1.1475 6.27 9.61 14.83 16.08 9.61	0.3 0.3 0.23 0.23 0.3 0.13 0.13 1.8 1.6 2.9 4.0 5.2 1.4	0.20 0.20 0.16 0.16 0.20 0.20 0.09 0.09 3.76 3.76 6.06 8.36 8.36 2.93 2.93
	SUZ-SWM60VA SUZ-SWM80VA PUD-SWM80VAA PUD-SWM100V/AA PUD-SWM100V/AA PUD-SWM100V/AA PUD-SHWM60VAA PUD-SHWM60VAA PUD-SHWM100V/AA PUD-SHWM100V/AA PUD-SHWM100V/AA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUD-SHWM120V/YAA PUHZ-SW750V/YAA PUHZ-SW160V/YAA PUHZ-SW160V/YAA PUHZ-SW160YKA PUHZ-SW100V/YAA	R32 R32 R32 R32 R32 R32 R32 R32 R32 R410A R410A R410A R410A R410A	675 675 675 675 675 675 675 675 675 2088 2088 2088 2088 2088 2088 2088	1.2 1.3 1.6 1.6 1.4 1.7 1.7 1.7 3.0 4.2 4.6 7.1 7.7	0.81 0.8775 0.8775 1.08 0.945 1.1475 1.1	0.3 0.23 0.23 0.3 0.3 0.3 0.13 0.13 1.8 1.6 2.9 4.0 5.2	0.20 0.20 0.16 0.16 0.20 0.20 0.09 0.09 3.76 3.76 6.06 8.36 8.36 2.93

R32 REFRIGERANT

R32 REFRIGERANT PROPERTIES

Under the conditions shown below, there is a possibility that R32 could ignite.

	R32	R410A	R22
Chemical formula	CH ₂ F ₂	CH ₂ F ₂ /CHF ₂ CF ₃	CHCIF2
Composition (blend ratio wt. %)	Single composition	R32/R125 (50/50 wt %)	Single composition
Ozone depletion potential (ODP)	0	0	0.055
Global warming potential (GWP) *1	675	2088	1810
LFL(vol.%) *2	13.3	_	_
UFL(vol.%) *3	29.3	_	_
Flammability *4	Lower flammability (2L)	No flame propagation (1)	No flame propagation (1)

^{*1} IPCC 4th assessment report.

Although R32 is classified as low flammability, the possibility of igniting can be eliminated by ensuring the following three points.

a) Do not leak refrigerant.

<Installation> ·Vacuum drying should be done. Air purging is prohibited.

·Follow "4. Installation Points of Refrigerant Piping Work"

<Repair/Relocation/Removal> ·Pump down or recovering refrigerant should be done.

b) Prevent concentration.

·Ventilate during installation and servicing, such as open the door or window and use a fan.

·Follow "2. Installation Restrictions".

c) Keep ignition source away from the unit.

- Do not braze pipe and unit which contain refrigerant. Before brazing, refrigerant should be recovered.
- Do not install unit while the electricity is turned on. Turn off electricity at the fuse box and check the wiring using a tester.
- Do not smoke when working or during transportation of the product.

Note

Both R32 / R410A emit a toxic gas when coming into contact with an open flame.

^{*2} LFL : Lower flammable limit

^{*3} UFL: Upper flammable limit

^{*4} ISO 817:2014

^{*5} R32 consistency is higher than LFL*1 and lower than UFL*2.

INSTALLATION RESTRICTIONS

In order to prevent the refrigerant from igniting, use the following instructions during installation.

1) Indoor Units

Install in a room with a floor area of Amin* or more, corresponding to refrigerant quantity M.

(M = factory-charged refrigerant + locally added refrigerant)

Install the indoor unit so that the height from the floor to the bottom of the indoor unit is hO*.

* Refer to table and drawings below

Amin[m²]

1.7

2.0

2.2

2.7

3.0

3.2

3.4

3.7

3.9

4.4

4.6

4.9

<M Series> M[ka]

0.7

8.0

0.9

1.2

1.3

1.4

1.5

1.6

1.7 1.8

1.9

2.0

<p ser<="" th=""><th>ies></th></p>	ies>
M[kg]	Amin[m²]
1.0	4
1.5	6
2.0	8
2.5	10
3.0	12
3.5	14
4.0	16
4.5	20
5.0	24
5.5	29
6.0	35
6.5	41
7.0	47
7.5	54

<Only for MFZ-KT>

Amin[m²]

3.75

3.95

4.15

4.34

4.54 4.74

M[ka]

1.00

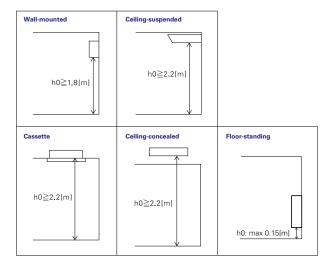
1.50

1.80 1.84

1.90

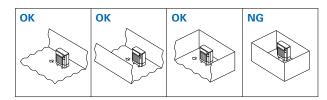
2.00

2.10


2.20

2.30

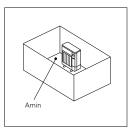
2.40


<ivixz< th=""><th>Series></th></ivixz<>	Series>
M[kg]	Amin[m²]
1.0	3
1.5	4.5
2.0	6
2.5	7.5
3.0	9
3.5	12
4.0	15.5
4.5	20
5.0	24
5.5	29
6.0	35
6.5	41
7.0	47

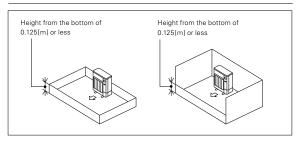
5.5	29
6.0	35
6.5	41
7.0	47
7.5	54

2) Outdoor Units

Install outdoor units in a place where at least one of the four sides is open or in a sufficiently large space without depressions.

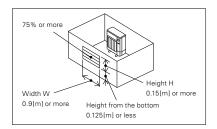

If you unavoidably install a unit in a space where all four sides are blocked or there are depressions, confirm that one of these situations (A, B or C) is satisfied.

A Secure sufficient installation space (minimum installation area Amin).


Install in a space with an installation area of Amin* or more, corresponding to refrigerant quantity M. (M = factory-charged refrigerant + locally added refrigerant)

* Refer to table and drawings below

M[kg]	Amin[m²]
1.0	12
1.5	17
2.0	23
2.5	28
3.0	34
3.5	39
4.0	45
4.5	50
5.0	56
5.5	62
6.0	67
6.5	73
7.0	78
7.5	84


B Install in a space with a depression height of ≤0.125[m].

Create an appropriate open ventilation area.

Make sure that the width of the open area is 0.9[m] or more and the height of the open area is 0.15[m] or more.

However, the height from the bottom of the installation space to the bottom edge of the open area should be 0.125[m] or less. More than 75% of the ventilation area should be open to allow air circulation.

Note

These countermeasures (A, B or C) are for keeping safety not for specification guarantee.

● Models with R32 Refrigerant: MSZ-L Series (single connection)

OSSNAY SYSTEM

LOSSNAY LINEUP

Applica	ation	Airflow	v 50 CMH	100 CMH	150 CMH	250 CMH	350 CMH	500 CMH	650 CMH	800 CMH	1000 CMH	1500 CMH	2000 CMH	2500 CMH
		LGH-RVX Series			•	•	•	•	•	•	•	•	•	
u.	þe	LGH-RVXT Series										•	•	•
entilatic	Concealed	GUF Series						•			•			
Centralized Ventilation	GUG Series	(Dx-coil unit for Lossnay						•	•	•	•	•	•	•
Centr		VL-220CZGV-E				•								
	Vertical Type	VL-CZPVU Series				•	•							
ation	Mounted Type	VL-100(E)U5-E		•										
Decentralized Ventilation	Wall Mo	VL-50(E)S ₂ -E VL-50SR ₂ -E	•											

LGH-RVX Series

A commercially oriented system that can be used to deliver high performance and functions virtually anywhere.

LGH-RVXT Series

Thin, large airflow models of the LGH series that deliver high performance and functions.

GUF Series

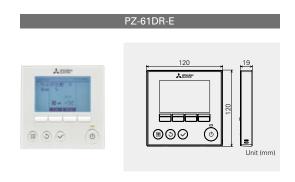
Heat recovery units with a heating and cooling system that uses the City Multi outdoor unit as a heat source.

Dx-coil unit (GUG Series)

Temperature control equipment that works with Lossnay units and Mr. Slim outdoor units.

VL-CZPVU Series

Vertical type for residential use centralized ventilation with sensible heat exchange.


VL-220CZGV-E

Centralized ventilation with sensible heat exchange, for residential use

VL-100(E)U5-E, VL-50(E)S2-E, VL-50SR2-E

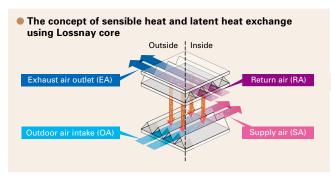
Wall-mounted models. Particularly suitable for houses and small offices.

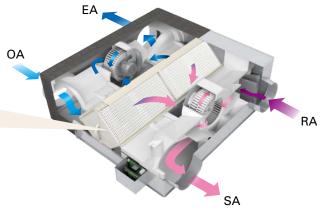
REMOTE CONTROLLER

Arear Lower case Unit (mm)

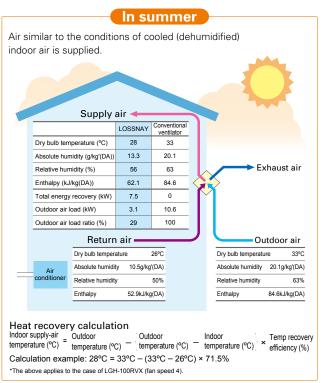
PZ-43SMF-E

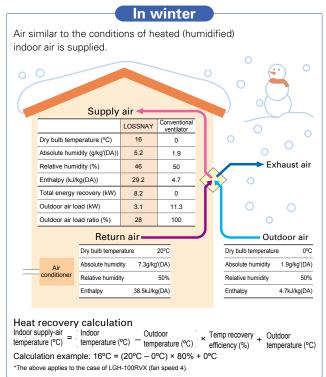
Function	PZ-61	DR-E	PZ-43	SMF-E
(Communicating mode)	LGH-RVX/RVXT	VL-220CZGV-E	LGH-RVX/RVXT	VL-220CZGV-E
Fan speed selection	4 fan speeds	4 fan speeds	2 of 4 fan speeds	2 of 4 fan speeds
Ventilation mode selection	Energy recovery / Bypass / Auto			Heat recovery / Bypass / Auto (available with optional part P-133DUE-E)
Night-purge setting (time and fan speed)	Yes	No	No	No
Function setting from RC	Yes	Yes	No	No
Bypass temp. free setting	Yes	Yes (available with optional part P-133DUE-E)	No	No
Heater-On temp. free setting	Yes	No	No	No
Fan power change after installation	Yes	Yes	No	No
ON/OFF timer	Yes	Yes	Yes	Yes
Auto-Off timer	Yes	Yes	No	No
Weekly timer	Yes	Yes	No	No
Operation restrictions (ON/OFF, ventilation mode, fan speed)	Yes	Yes (ventilation mode is available with optional part P-133DUE-E)	No	No
Operation restrictions (fan speed skip setting)	Yes	Yes	No	No
Screen contrast adjustment	Yes	Yes	No	No
Language selection	Yes (8 languages)	Yes (8 languages)	No (English only)	No (English only)
Initializing	Yes	Yes	No	No
Filter cleaning sign	Yes	Yes	Yes	Yes
Lossnay core cleaning sign	Yes	No	No	No
Error indication	Yes	Yes	Yes	Yes
Error history	Yes	Yes	No	No


LOSSNAY


Lossnay ventilation systems are renowned industry-wide for their efficiency. They offer environment-friendly energy recovery and humidity control, and enable air conditioning systems to simultaneously provide optimum room comfort and energy savings.

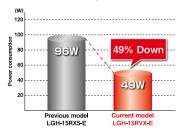
Indoor Air Quality Inside a Building is Optimized Through Temperature and Humidity Exchange by Lossnay

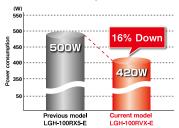

Lossnay is a total heat exchange ventilation system that uses paper characteristics to perform temperature (sensible heat) and humidity (latent heat) exchange.



What Can Be Improved by Introducing Lossnay?

Ventilation with maximized comfort


Commercial Use Lossnay

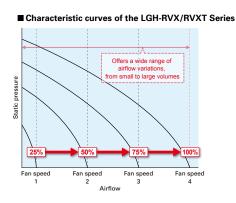

LGH-RVX Series (Standard model)

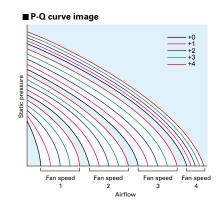
Power consumption reduced further with the introduction of a DC motor

Low power consumption is realised with the introduction of a high efficiency brushless DC motor. Compared to models with an AC motor, power consumption is reduced.

Comparison between current and previous power consumption (Current model: Fan speed 4 at 230V 50Hz, Previous model: Extra-High at 220V 50Hz)

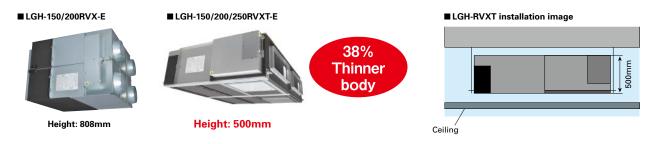
Improved airflow range

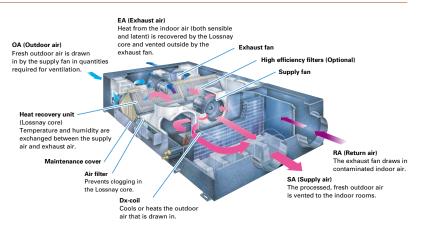

Wide airflow range


Each fan speed has a range setting of 25, 50, 75 and 100%, allowing much finer airflow control. When used in combination with the CO₂ sensor or timer function, airflow can be controlled according to conditions that realize better performance and reduce power consumption.

Fan speed adjustment function

The default fan speed value can be adjusted slightly. Use the PZ-61DR-E remote controller to reset the speed.

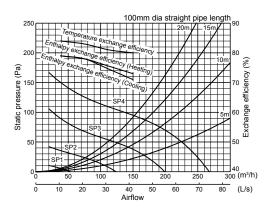

- 1) Considering the total hours of Lossnay operation (filter clogging), fan power can be adjusted automatically after a given period of time.
- 2) After the unit is installed, fine adjustments can be made if the airflow is slightly lower than the desired airflow.


LGH-RVXT Series (Thin body type)

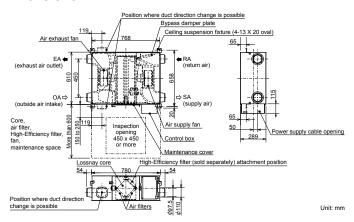
The LGH-RVXT series has a large airflow of 1500 - 2500 CMH but a thin body of approximately 500mm. Therefore, installing the unit in the ceiling is easy.

GUF Series (Lossnay with Dx-coil unit)

Along with Lossnay ventilation, the OA processing unit is really two units in one, functioning as the main air conditioner when the load is light and adding supplemental air conditioning when the load is heavy.

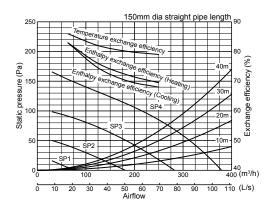

Commercial Use Lossnay Specifications

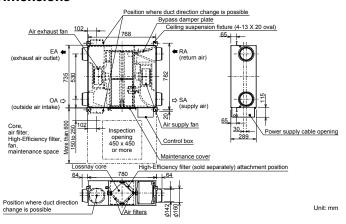
RVX Series


LGH-15RVX-E

Electrical power supply			220-240V/50Hz, 220V/60Hz									
Ventilation mode		Heat recovery mode Bypass mode										
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1			
Running current (A)		0.40	0.24	0.15	0.10	0.41	0.25	0.15	0.10			
Input power (W)		49	28	14	7	52	28	14	8			
Airflow	(m³/h)	150	113	75	38	150	113	75	38			
All Hove	(L/s)	42	31	21	10	42	31	21	10			
External static pressure (Pa)		95	54	24	6	95	54	24	6			
Temperature exchange efficiency (%)	80	81	83	84	-	-	-	-			
Enthalpy exchange efficiency (%)	Heating	73	75.5	78	79	-	-	-	-			
Entirally exchange eniciency (%)	Cooling	71	74.5	78	79	-	-	-	-			
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)		28	24	19	17	29	24	19	18			
Weight (kg)					2	.0						
Specific energy consumption class		A										

Characteristic Curves


Dimensions


LGH-25RVX-E

Electrical power supply		220-240V/50Hz, 220V/60Hz								
Ventilation mode			Heat reco	very mode			Bypass	s mode		
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1	
Running current (A)		0.48	0.28	0.16	0.10	0.48	0.29	0.16	0.11	
Input power (W)		62	33	16	7.5	63	35	17	9	
Airflow	(m ³ /h)	250	188	125	63	250	188	125	63	
All now	(L/s)	69	52	35	17	69	52	35	17	
External static pressure (Pa)		85	48	21	5	85	48	21	5	
Temperature exchange efficiency (%)	79	80	82	86	-	-	-	-	
Enthalpy exchange efficiency (%)	Heating	69.5	72	76	83	-	-	-	-	
Entirally exchange eniciency (%)	Cooling	68	70	74.5	83	-	-	-	-	
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)		27	22	20	17	27.5	23	20	17	
Weight (kg)					2	23				
Specific energy consumption class A										

Characteristic Curves

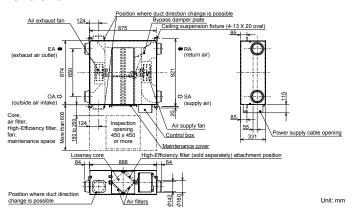
Dimensions

[■]For LGH-RVX and LGH-RVXT series

^{*}The running current, the input power, the efficiency and the noise are based on the rated airflow, 230V/50Hz, and 220V/60Hz.

*Figures in the chart is measured according to Japan Industrial Standard (JIS B 8628). Characteristic Curves are measured by chamber method.

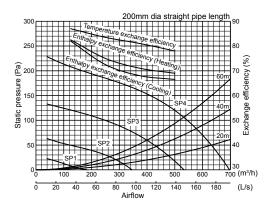
*For specifications at other frequencies, contact your dealer.

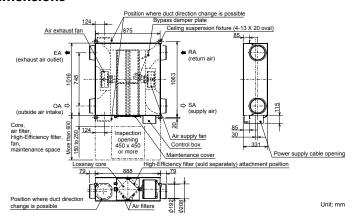

LGH-35RVX-E

Electrical power supply 220-240V/50Hz, 220V/60Hz									
Ventilation mode		Heat recovery mode Bypass mode							
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1
Running current (A)		0.98	0.54	0.26	0.12	0.98	0.56	0.28	0.13
Input power (W)		140	70	31	11	145	72	35	13
Airflow	(m ³ /h)	350	263	175	88	350	263	175	88
All llow	(L/s)	97	73	49	24	97	73	49	24
External static pressure (Pa)		160	90	40	10	160	90	40	10
Temperature exchange efficiency (%)	80	82.5	86	88.5	-	-	-	-
Enthalpy exchange efficiency (%)	Heating	71.5	74	78.5	83.5	-	-	-	-
Entrialpy exchange enticiency (78)	Cooling	71	73	78	82	-	ī	-	-
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)		32	28	20	17	32.5	28	20	18
Weight (kg)					3	10			

Characteristic Curves

Static pressure (8 160 180 (L/s)


Dimensions


LGH-50RVX-E

Electrical power supply		220-240V/50Hz, 220V/60Hz								
Ventilation mode			Heat recov	very mode			Bypass	mode		
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1	
Running current (A)		1.15	0.59	0.26	0.13	1.15	0.59	0.27	0.13	
Input power (W)		165	78	32	12	173	81	35	14	
Airflow	(m ³ /h)	500	375	250	125	500	375	250	125	
All llow	(L/s)	139	104	69	35	139	104	69	35	
External static pressure (Pa)		120	68	30	8	120	68	30	8	
Temperature exchange efficiency (%)	78	81	83.5	87	1	-	-	-	
Enthalpy exchange efficiency (%)	Heating	69	71	75	82.5	-	-	-	-	
Entirally exchange efficiency (78)	Cooling	66.5	68	72.5	82	-	-	-	-	
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)		34	28	19	18	35	29	20	18	
Weight (kg)			33							

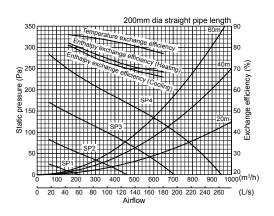
Characteristic Curves

Dimensions

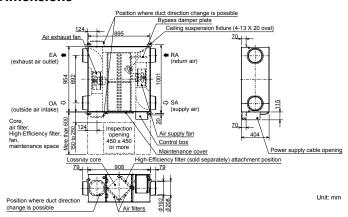
- For LGH-RVX and LGH-RVXT series

 *The running current, the input power, the efficiency and the noise are based on the rated airflow, 230V/50Hz, and 220V/60Hz.

 *Figures in the chart is measured according to Japan Industrial Standard (JIS B 8628). Characteristic Curves are measured by chamber method.

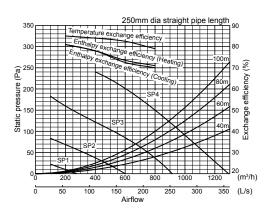

 *For specifications at other frequencies, contact your dealer.

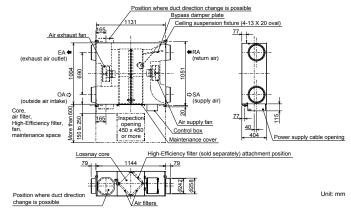
Commercial Use Lossnay Specifications


LGH-65RVX-E

Electrical power supply				2:	20-240V/50H	tz, 220V/60H	Ηz		
Ventilation mode			Heat recov	very mode			Bypass	mode	
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1
Running current (A)			0.90	0.39	0.15	1.72	0.86	0.38	0.16
Input power (W)			131	49	15	262	131	47	17
Airflow	(m ³ /h)	650	488	325	163	650	488	325	163
Airnow	(L/s)	181	135	90	45	181	135	90	45
External static pressure (Pa)		120	68	30	8	120	68	30	8
Temperature exchange efficiency (%)	77	81	84	86	-	-	-	-
Enthalpy exchange efficiency (%)	Heating	68.5	71	76	82	-	-	-	-
Cooling		66	69.5	74	81	-	-	-	-
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)			29	22	18	35.5	29	22	18
Weight (kg)					3	8			

Characteristic Curves


Dimensions

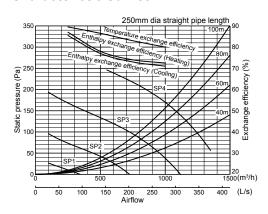


LGH-80RVX-E

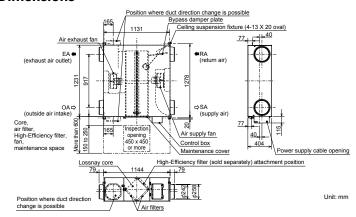
Electrical power supply				2:	20-240V/50H	lz, 220V/60H	Ηz		
Ventilation mode			Heat recov	very mode			Bypass	mode	
Fan speed			SP3	SP2	SP1	SP4	SP3	SP2	SP1
Running current (A)			0.83	0.36	0.15	1.97	0.86	0.40	0.15
Input power (W)			151	60	18	340	151	64	20
Airflow	(m ³ /h)	800	600	400	200	800	600	400	200
All How	(L/s)	222	167	111	56	222	167	111	56
External static pressure (Pa)		150	85	38	10	150	85	38	10
Temperature exchange efficiency (%)	79	82.5	84	85	-	-	-	-
Enthalpy exchange efficiency (%)	Heating	71	73.5	78	81	-	-	-	-
Cooling		70	72.5	78	81	-	-	-	-
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)			30	23	18	36	30	23	18
Weight (kg)					4	8			

Characteristic Curves

^{*}The running current, the input power, the efficiency and the noise are based on the rated airflow, 230V/50Hz, and 220V/60Hz.

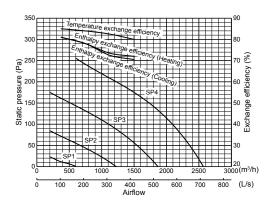

*Figures in the chart is measured according to Japan Industrial Standard (JIS B 8628). Characteristic Curves are measured by chamber method.

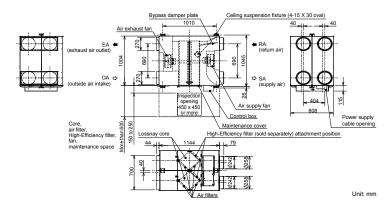
*For specifications at other frequencies, contact your dealer.


LGH-100RVX-E

Electrical power supply			220-240V/50Hz, 220V/60Hz Heat recovery mode Bypass mode SP4 SP3 SP2 SP1 SP4 SP3 SP2 SP1 2.50 1.20 0.50 0.17 2.50 1.20 0.51 0.19							
Ventilation mode			Heat recov	very mode			Bypass	mode		
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1	
Running current (A)			1.20	0.50	0.17	2.50	1.20	0.51	0.19	
Input power (W)			200	75	21	420	200	75	23	
Airflow	(m ³ /h)	1000	750	500	250	1000	750	500	250	
Airnow	(L/s)	278	208	139	69	278	208	139	69	
External static pressure (Pa)		170	96	43	11	170	96	43	11	
Temperature exchange efficiency (%)	80	83	86.5	89.5	-	-	-	-	
Enthalpy exchange efficiency (%)	Heating	72.5	74	78	87	-	-	-	-	
Cooling		71	73	77	85.5	-	-	-	-	
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)		37	31	23	18	38	32	24	18	
Weight (kg)					5	4				

Characteristic Curves


Dimensions



LGH-150RVX-E

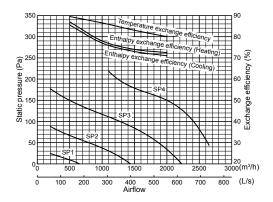
Electrical power supply				2	20-240V/50H	tz, 220V/60H	Ηz		
Ventilation mode		Heat recovery mode Bypass mode							
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1
Running current (A)		3.71 1.75 0.70 0.29 3.85 1.78 0.78			0.78	0.30			
Input power (W)			311	123	38	698	311	124	44
Airflow	(m ³ /h)	1500	1125	750	375	1500	1125	750	375
All llow	(L/s)	417	313	208	104	417	313	208	104
External static pressure (Pa)		175	98	44	11	175	98	44	11
Temperature exchange efficiency (%)	80	82.5	84	85	-	-	-	-
Enthalpy exchange efficiency (%)	Heating	72	73.5	78	81	-	-	-	-
Enthalpy exchange enticlency (78)	Cooling	70.5	72.5	78	81	-	-	-	-
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)			32	24	18	40.5	33	26	18
Weight (kg)					9	18			

Characteristic Curves

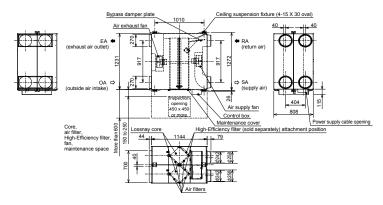
[■] For LGH-RVX and LGH-RVXT series

*The running current, the input power, the efficiency and the noise are based on the rated airflow, 230V/50Hz, and 220V/60Hz.

*Figures in the chart is measured according to Japan Industrial Standard (JIS B 8628). Characteristic Curves are measured by chamber method.


*For specifications at other frequencies, contact your dealer.

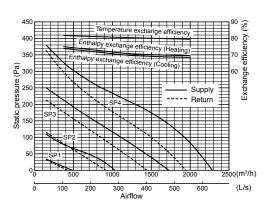
Commercial Use Lossnay Specifications


LGH-200RVX-E

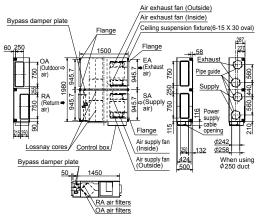
Electrical power supply				2:	20-240V/50H	tz, 220V/60H	Ηz		
Ventilation mode			Heat recov	very mode			Bypass	mode	
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1
Running current (A)			2.20	0.88	0.33	4.54	2.06	0.87	0.35
Input power (W)			400	153	42	853	372	150	49
Airflow	(m ³ /h)	2000	1500	1000	500	2000	1500	1000	500
Airnow	(L/s)	556	417	278	139	556	417	278	139
External static pressure (Pa)		150	84	38	10	150	84	38	10
Temperature exchange efficiency (%)	80	83	86.5	89.5	-	-	-	-
Enthalpy exchange efficiency (%)	Heating	72.5	74	78	87	-	-	-	-
Cooling		71	73	77	85.5	-	-	-	-
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)			36	28	18	41	36	27	19
Weight (kg)					1	10			

Characteristic Curves

Dimensions


Unit: mm

RVXT Series


LGH-150RVXT-E

Electrical power supply				2:	20-240V/50H	Hz, 220V/60H	∃z		
Ventilation mode			Heat recov	very mode			Bypass	mode	
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1
Running current (A)		4.30	2.40	1.10	0.36	3.40	1.80	0.77	0.31
Input power (W)		792 421 176 48 625 334 134			134	37			
Airflow (m³/h)		1500	1125	750	375	1500	1125	750	375
All llow	(L/s)	417	313	208	104	417	313	208	104
External static pressure (Pa)	Supply	175	98	44	11	175	98	44	11
External static pressure (i a)	Return	100	56	25	6	100	56	25	6
Temperature exchange efficiency (%)	80	80.5	81	81.5	-	-	-	-
Enthalpy exchange efficiency (%)	Heating	70	71	73	75	-	-	-	-
Cooling		69	70	72	74	-	-	-	-
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)			35.5	29.5	22	39	33	26.5	20.5
Weight (kg)				15	56				

Characteristic Curves

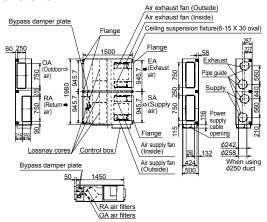
Dimensions

Unit: mm

^{*}The running current, the input power, the efficiency and the noise are based on the rated airflow, 230V/50Hz, and 220V/60Hz.

*Figures in the chart is measured according to Japan Industrial Standard (JIS B 8628). Characteristic Curves are measured by chamber method.

*For specifications at other frequencies, contact your dealer.

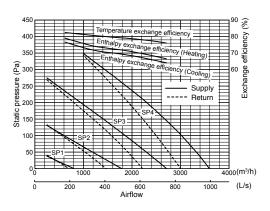

LGH-200RVXT-E

Electrical power supply				2	20-240V/50H	lz, 220V/60H	Ηz		
Ventilation mode			Heat recov	very mode			Bypass	mode	
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1
Running current (A)			2.70	1.10	0.39	5.00	2.20	0.85	0.34
Input power (W)	t power (W) 1000 494 197 56 916 407 1			150	45				
Airflow (m³/h)		2000	1500	1000	500	2000	1500	1000	500
Alfilow	(L/s)	556	417	278	139	556	417	278	139
External static pressure (Pa)	Supply	175	98	44	11	175	98	44	11
External static pressure (Fa)	Return	100	56	25	6	100	56	25	6
Temperature exchange efficiency (%)	80	81	82.5	84	-	-	-	-
Enthalpy exchange efficiency (%)	Heating	72.5	73.5	77	83	-	-	-	-
Littralpy exchange efficiency (%)	Cooling	70	71	74.5	80.5	-	-	-	-
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)		39.5	35.5	28	22	40.5	34.5	27	20.5
Weight (kg)				15	59				

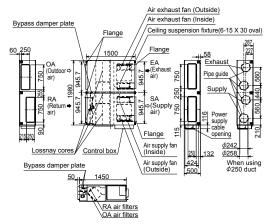
Characteristic Curves

90 04 08 06 Exchange efficiency (%) Enthalpy exchange efficiency (Cooling) Static pressure (Supply Return 3000(m³/h) 800 (L/s) 200 600

Dimensions



Unit: mm


LGH-250RVXT-E

Electrical power supply				2	20-240V/50H	tz, 220V/60H	łz	Bypass mode SP3 SP2 SP1 3.10 1.30 0.49 587 212 69 1875 1250 625 521 347 174 98 44 11 56 25 6						
Ventilation mode			Heat recov	very mode			Bypass	mode						
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1					
Running current (A)			3.60	1.40	0.57	6.90	3.10	1.30	0.49					
Input power (W)		1446 687 244 82 1298 587 212			212	69								
Airflow (m³/h)		2500	1875	1250	625	2500	1875	1250	625					
All low	(L/s)	694	521	347	174	694	521	347	174					
External static pressure (Pa)	Supply	175	98	44	11	175	98	44	11					
External static pressure (i a)	Return	100	56	25	6	100	56	25	6					
Temperature exchange efficiency (%)	77	79	80.5	82.5	-	-	-	-					
Enthalpy exchange efficiency (%)	Heating	68	71.5	74	79	-	1	-	-					
Cooling		65.5	69	71.5	76.5	-	-	-	-					
Noise (dB) (Measured at 1.5m under the center of the unit in an anechoic chamber)			39	32	24	44	38.5	31	22.5					
Weight (kg)				19	98									

Characteristic Curves

Dimensions

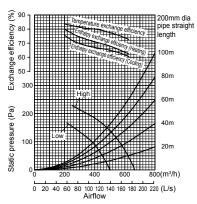
Unit: mm

[■]For LGH-RVX and LGH-RVXT series

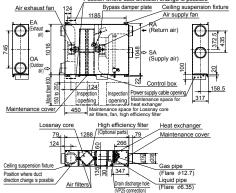
*The running current, the input power, the efficiency and the noise are based on the rated airflow, 230V/50Hz, and 220V/60Hz.

*Figures in the chart is measured according to Japan Industrial Standard (JIS B 8628). Characteristic Curves are measured by chamber method.

*For specifications at other frequencies, contact your dealer.


Commercial Use Lossnay Specifications

GUF Series

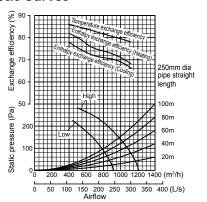

GUF-50RD4

Electrical power supply				220-240	0V/50Hz			
Ventilation mode			Heat recov	very mode	Bypas	s mode		
Fan speed			High	Low	High	Low		
Running current (A)			1.15 0.70 1.15 0.70					
Input power (W)			235-265	150-165	235-265	150-165		
Airflow		(m ³ /h)	500	400	500	400		
Airilow	-	(L/s)	139	111	139	111		
External static pressure (Pa)	a)		140 90 140					
Temperature exchange effic	iciency (%)		77.5	80	-	-		
Enthalpy exchange efficiency	ov (9/)	Heating	68	71	-	-		
Entrialpy exchange enrolence	icy (70)	Cooling	65	67	-	-		
Cooling capacity (kW)	<u>.</u>			5.57	(1.94)	•		
Heating capacity (kW)				6.21	(2.04)			
Capacity equivalent to the in	indoor unit			PS	32			
Hum	nidifying			-	-			
Humidifier Hum	midifying cap	acity (kg/h)	-					
Wate	ter supply pre	essure	-					
Noise (dB) (Measured at	t 1.5m unde	r the center of the unit in an anechoic chamber)	33.5-34.5	29.5-30.5	35-36	29.5-30.5		
Weight (kg)	(kg)			48				

Characteristic Curves

Dimensions Position where duct direction change is possible

Unit: mm

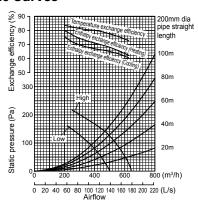

Unit: mm

GUF-100RD4

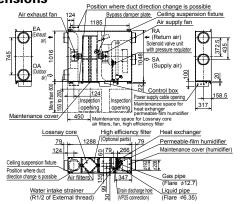
Electrical power supply				220-240	OV/50Hz		
Ventilation mode			Heat recov	very mode	Bypass	mode	
Fan speed			High	Low	High	Low	
Running current (A)			2.20	1.73	2.25	1.77	
Input power (W)			480-505 370-395 490-515				
Airflow		(m ³ /h)	1000	800	1000	800	
Airilow		(L/s)	278 222 278 22				
External static pressure (Pa))		140 90 140 9				
Temperature exchange effici	ciency (%)		79.5	81.5	-	-	
Enthalpy exchange efficience	m. (9/)	Heating	71	74	-	-	
Entrialpy exchange enicience	Sy (70)	Cooling	69	71	-	-	
Cooling capacity (kW)				11.44	(4.12)	•	
Heating capacity (kW)				12.56	(4.26)		
Capacity equivalent to the in	ndoor unit			P6	63		
Humi	nidifying			-	-		
Humidifier Humi	idifying cap	acity (kg/h)	-				
Wate	er supply pr	essure	=				
Noise (dB) (Measured at 1	1.5m unde	r the center of the unit in an anechoic chamber)	38-39	34-35	38-39	35-36	
Weight (kg)			82				

Dimensions

Characteristic Curves

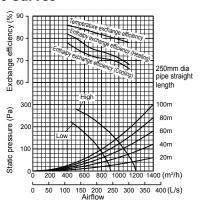

Position where duct direction change is possible Ceiling suspension fixture Air supply fan 1231 More than 60 150 to 250 Control box
nance space for Lossnay core
rs, fan, high efficiency filter Maintenance cover High efficiency filter
/(Optional parts) Heat exchanger Maintenance cover 79 149 Gas pipe (Flare φ 15.88) Ceiling suspension fixture Liquid pipe (Flare \$\phi\$ 9.52) 361

Position where duct direction change is possible


GUF-50RDH4

Electrical power supply				220-24	0V/50Hz		
Ventilation mode			Heat reco	very mode	Bypass	s mode	
Fan speed			High	Low	High	Low	
Running current (A)			1.15 0.70 1.15 0.70				
Input power (W)			235-265	150-165	235-265	150-165	
Airflow		(m ³ /h)	500	400	500	400	
Airilow		(L/s)	139	111	139	111	
External static pressure (Pa)	a)		125 80 125 80				
Temperature exchange effic	ciency (%)		77.5	80	-	-	
Enthalpy exchange efficience	ov /9/ \	Heating	68	71	-	-	
Enthalpy exchange eniciend	Cy (%)	Cooling	65	67	-	-	
Cooling capacity (kW)				5.57	(1.94)		
Heating capacity (kW)				6.21	(2.04)		
Capacity equivalent to the in	indoor unit			P	32		
Hum	nidifying			Permeable fi	lm humidifier		
Humidifier Hum	nidifying cap	acity (kg/h)		2.7 (h	eating)		
Wate	er supply pr	essure	Minimum pressure : 2.0 × 10 ⁴ Pa Maximum pressure : 49.0 × 10 ⁴ Pa				
Noise (dB) (Measured at	1.5m unde	r the center of the unit in an anechoic chamber)	33.5-34.5	29.5-30.5	35-36	29.5-30.5	
Weight (kg)			51 (filled with water 55)				

Characteristic Curves


Dimensions

GUF-100RDH4

Electrical power supply				220-24	0V/50Hz			
Ventilation mode			Heat reco	very mode	Bypas	s mode		
Fan speed			High	Low	High	Low		
Running current (A)			2.20	1.76	2.25	1.77		
Input power (W)			480-505 385-400 490-515 38					
Airflow	(m ³ /h)		1000	800	1000	800		
Airnow	(L/s)		278	222	278 23			
External static pressure (Pa)			135	86	86 135 86			
Temperature exchange efficiency	(%)		79.5	81.5	-	-		
Enthalpy exchange efficiency (%	Heating		71	74	-	-		
Entrialpy exchange eniciency (%	Cooling		69	71	-	-		
Cooling capacity (kW)				11.44	(4.12)	•		
Heating capacity (kW)				12.56	(4.26)			
Capacity equivalent to the indoor	unit			Pi	63			
Humidifyi	g			Permeable fi	lm humidifier			
Humidifier Humidifyi	g capacity (kg/h)		5.4 (heating)					
Water sup	ply pressure		Minimum	n pressure : 2.0 × 10 ⁴ Pa Maximum pressure : 49.0 × 10 ⁴ Pa				
Noise (dB) (Measured at 1.5m	under the center of	f the unit in an anechoic chamber)	namber) 38-39 34-35 38-39 35-3					
Weight (kg)			88 (filled with water 96)					

Characteristic Curves

Dimensions Position where duct direction change is possible

Bypass damper plate Airsupply fan Ceiling suspension fixture Air exhaust fan Maintenance cover 600 Control box Heat exchanger Permeable-film humidifier 79 149 Maintenance cover (humidifier) Gas pipe (Flare φ15.88) Liquid pipe (Flare ϕ 9.52) Water intake strainer (R1/2 of External thread)

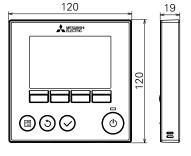
Unit: mm

Unit: mm

Optimized System Integration

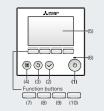
List of Remote Controller Settings and Functions

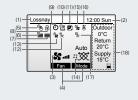
The remote controller provides a wide range of functions and features in addition to the main functions described below, such as sophisticated energy saving control and easy user interface.


Function (Communicating mode)	PZ-61DR-E	PZ-43SMF-E
Fan speed selection	4 fan speeds	2 of 4 fan speeds
Ventilation mode selection	Energy recovery / Bypass / Auto	Energy recovery / Bypass / Auto
Night-purge setting (time and fan speed)	Yes	No
Function setting from RC	Yes	No
Bypass temp. free setting	Yes	No
Heater-On temp. free setting	Yes	No
Fan power up after installation	Yes	No
0 - 10VDC external input	Yes	Yes
ON/OFF timer	Yes	Yes
Auto-Off timer	Yes	No
Weekly timer	Yes	No
Operation restrictions (ON/OFF, Ventilation mode, fan speed)	Yes	No
Operation restrictions (Fan speed skip setting)	Yes	No
Screen contrast adjustment	Yes	No
Language selection	Yes (8 languages)*	No (English only)
Initializing	Yes	No
Filter cleaning sign	Yes	Yes
Lossnay core cleaning sign	Yes	No
Error indication	Yes	Yes
Error history	Yes	No
OA/RA/SA temp. display	Yes	No

^{*}The 8 languages are English, German, French, Spanish, Italian, Portuguese, Russian and Swedish.

Controllers


Lossnay Remote Controller (PZ-61DR-E)



Unit: mm

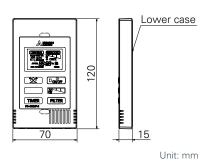
Operation section

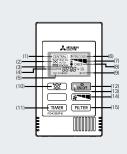
Display section

- (1) Press to turn ON/OFF the Lossnay unit.

- (2) Press to save the setting.
 (3) Press to return to the previous screen.
 (4) Press to bring up the Main menu.
- (5) Operation settings will appear. When the backlight is off, pressing any button turns the backlight on and it will stay lit for a certain period of time depending on the screen.
- (6) This lamp lights up in green while the unit is in operation. It blinks while the remote controller is starting up or when there is an error.

 (7) Main menu: Press to move the cursor down.
- (8) Main display: Press to change the fan speed. Main menu: Press to move the cursor up.
- (9) Main display: Press to change the ventilation mode. Main menu: Press to go to the previous page.
 (10) Main menu: Press to go to the next page.


- (1) Lossnay is always displayed


- (1) Lossnay is aways displayed.
 (2) Current time appears here.
 (3) Fan speed setting appears here.
 (4) Functions of the corresponding buttons appear here.
 (6) Appears when the ON/OFF operation is centrally controlled.
 (6) Appears when the filter reset function is centrally controlled.

- (6) Appears when the filter reset function is centrally controlled.
 (7) Indicates when the filter and/or Lossnay core needs maintenance.
 (8) Appears when the buttons are locked and/or a fan speed is skipped.
 (9) Appears when the On/Off timer or Auto-off timer function is enabled.
 (10) Appears when the Weekly timer is enabled.
 (11) Appears when the night-purge function is available.
 (12) Appears when performing operation to protect the equipment.
 (13) Appears when performing the power supply/exhaust function or the delay operation at the start of operation.
 (14) Indicates the verificiation mode setting.
- (14) Indicates the ventilation mode setting.
- (15) Appears when external fan speed operation.
 (16) Appears when operation is interlocked with the external unit.
- (17) Appears when external ventilation mode operation.(18) Displays the outdoor temperature, return temperature, and supply temperature (calculated value)

Lossnay Remote Controller (PZ-43SMF-E)

- (1) Displayed during remote operation is prohibited by the centralized control unit, etc
- (2) Displays the ventilation mode status.

₩ HEAT EX. Heat exchange By-pass ← BY-PASS Automatic (HEAT EX./BY-PASS) AUTO Automatic (HEAT EX./BY-PASS)

- (3) Displayed while the Lossnay remote controller is powered on.
- (4) Displays on-timer or off-timer duration.
- (5) When a button is pressed for a function which the Lossnay unit cannot perform, this display flashes concurrently with the display of the function.
- (6) Displayed when the Lossnay starts off by interlocked indoor unit or external signal.
 (7) Displays the selected fan speed.
- (8) Displayed together with the malfunctioning unit (3 digits) and an error code (4 digits).
- (9) Displayed when the accumulated operating time reaches the time set for filter maintenance.

 (10) Used to select the ventilation mode among heat exchange, by-pass
- or automatic (11) Increasing 0:30 by pressing it once. Keep pressing the button for

- fast-forwarding.

 (12) Switch for start and stop.

 (13) On during operation. Flashes when a malfunction occurs.

 (14) Used to select the fan speed either "Low" or "High".

(15) Press twice to reset the filter sign display.

Filters

Standard Filters

Replacements for the standard filter supplied with the Lossnay main unit.

		Filter			Lossnay	
Filter	Classif	ication	Model Name	Included	Applicable model	Required
Material	terial ISO 16890 EN779 (2012) IVIOGEI Name		piece/set	Applicable model	filter pieces	
			PZ-15RF8-E	2	LGH-15RVX-E	2
			PZ-25RF ₈ -E	4	LGH-25RVX-E	4
			PZ-35RF ₈ -E	7-35RF ₈ -E 4 LGH-35RVX-E		4
		PZ-50RF ₈ -E	4	LGH-50RVX-E, GUF-50RD4, GUF-50RDH4	4	
	Coarse 35%	G3*	PZ-65RF ₈ -E	4	LGH-65RVX-E	4
Non-woven Fabrics			PZ-80RFs-E	4	LGH-80RVX-E	4
1 021100			FZ-OUNF8-E	4	LGH-150RVX-E	8
			D7 100DF= F	4	LGH-100RVX-E, GUF-100RD4, GUF-100RDH4	4
			PZ-100RF ₈ -E	4	LGH-200RVX-E	8
	C F00/	60	PZ-150RTF-E	4	LGH-150RVXT-E	4
Coarse	Coarse 50%	G3	PZ-250RTF-E	4	LGH-200RVXT-E, LGH-250RVXT-E	4

^{*}The classification in EN779 (2002) is G3.

High-efficiency Filters Optional

These high-efficiency filters can be easily inserted in the Lossnay unit without the need to attach external parts.

		Filter			Lossnay			
Filter	Classif	ication	Model Name	Included	Applicable model	Required		
Material	ISO 16890 EN779 (2012		Wiodel Name	piece/set	Applicable Hodel	filter pieces		
			PZ-15RFM-E	1	LGH-15RVX-E	1		
		PZ-25RFM-E	2	LGH-25RVX-E	2			
		M6*	PZ-35RFM-E	2	LGH-35RVX-E	2		
0 11 11			PZ-50RFM-E	2	LGH-50RVX-E, GUF-50RD4, GUF-50RDH4	2		
Synthetic fiber	ePM ₁₀ 75%		PZ-65RFM-E	2	LGH-65RVX-E	2		
			PZ-80RFM-F	2	LGH-80RVX-E	2		
			PZ-8UNFIVI-E		LGH-150RVX-E	4		
			PZ-100RFM-E	2	LGH-100RVX-E, GUF-100RD4, GUF-100RDH4	2		
			PZ-TOURFIVI-E	2	LGH-200RVX-E	4		

^{*}The classification in EN779 (2002) is F7.

Advanced High-efficiency Filters (For LGH-RVX and GUF Series) Optional

These advanced high-efficiency filters are designed to remove approx. 99.7% of airborne particulates that are 0.5µm or larger.

*GB/T14295-2008 : YG class, 99.7% (Collecting efficiency for particles that are 0.5 μ m or larger)

		Filter			Lossnay	
Filter	Classif	ication		Included		Required
Material	ISO 16890	ASHRAE 52.2 (2017)	Model Name	piece/set	Applicable model	filter pieces
	ePM1 75%		PZ-15RFP ₂ -E	1	LGH-15RVX-E	1
			PZ-25RFP ₂ -E	2	LGH-25RVX-E	2
			PZ-35RFP ₂ -E	FP ₂ -E 2 LGH-35RVX-E		2
0 11 11			PZ-50RFP ₂ -E	2	LGH-50RVX-E, GUF-50RD4, GUF-50RDH4	2
Synthetic fiber	ePM _{2.5} 80%	MERV16	PZ-65RFP ₂ -E	2	LGH-65RVX-E	2
	ePM ₁₀ 95%		PZ-80RFP ₂ -E	2	LGH-80RVX-E	2
			FZ-OUNFF2-E	2	LGH-150RVX-E	4
			PZ-100RFP ₂ -E	2	LGH-100RVX-E, GUF-100RD4, GUF-100RDH4	2
			FZ-100RFP2-E	2	LGH-200RVX-E	4

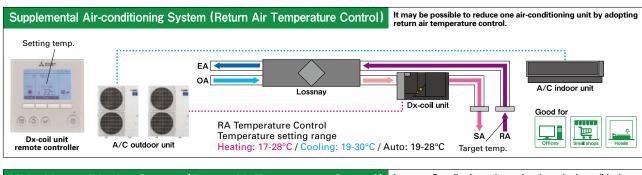
Advanced High-efficiency Filters (For LGH-RVXT Series) Optional

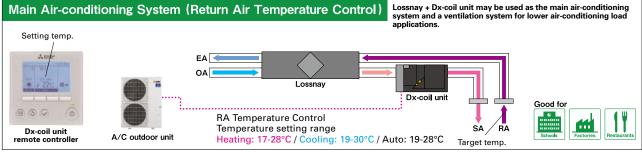
These advanced high-efficiency filters can be easily inserted in the Lossnay unit without the need to attach external parts.

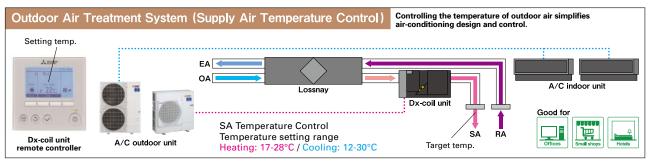
		Filter	Lossnay			
Filter	Classification		Madal Nama	Included	Applicable model	Required
Material	ISO 16890	EN779 (2012)	79 (2012) Model Name piece/set		Applicable model	filter pieces
	ePM ₁₀ 75%	M6*	PZ-M6RTFM-E	3		
Non-woven Fabrics	ePM1 65% ePM2.5 75% ePM10 90%	F8*	PZ-F8RTFM-E	3	LGH-150RVXT-E, LGH-200RVXT-E, LGH-250RVXT-E	3

^{*}There is no data for the classification in EN779 (2002).

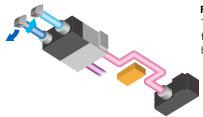
Optional Dx-coil Unit for Lossnay

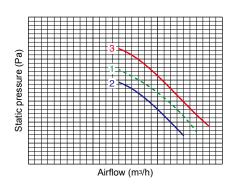

Supply Comfortable Control


Product Features


- Lossnay return air and supply air temperature control are possible by connecting the Dx-coil unit to Mr. Slim (power inverter series).
- Connecting the Dx-coil unit will expand Lossnay's temperature control range (500-2,500 CMH). Suitable for various applications such as offices, shops and schools etc.

Application Examples



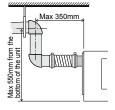

*The above images of using the LGH-RVXT Series are simply examples for reference.

Flexible Installation

Flexible Connection to Lossnay

The length of the connection cable (accessory) between the Lossnay and Dx-coil unit is about 6m, so flexible installation is possible (two units can be installed close together or far apart with straight or bent ducting).

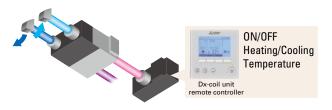
To Keep High Static Pressure

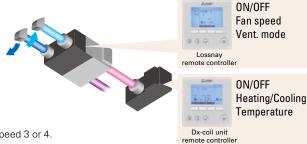

P-Q curve image

- 1. Lossnay unit
- 2. Lossnay unit + Dx-coil unit
- 3. Lossnay unit (fan power-up +4) + Dx-coil unit

Dx-coil unit static pressure loss is kept to a minimum, making it possible to maintain high static pressure using the fan power-up function of the Lossnay. The fan power-up function is only available when used with the PZ-61DR-E Lossnay remote controller.

Drain Pump Equipment


A built-in drain pump makes attaching the drain hose in the ceiling cavity easy, resulting in simple and fast installation.


User-friendly System Control

Flexible Remote Controller Selection

(A) One remote controller

(B) Two remote controllers

When using only one remote controller, Lossnay fan speed is fixed at fan speed 3 or 4.

When using two remote controllers, all Lossnay functions are available.

- *1: Lossnay unit and Dx-coil unit both will synchronously switch on and off.
- *2: When one of the two remote controllers is turned ON, the other remote controller turns ON synchronously.

Priority Mode Selection

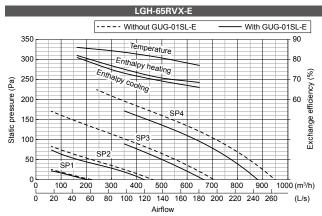
Temperature priority mode (factory setting) or Fan speed priority mode are selectable when Lossnay unit fan speed is controlled by a CO₂-sensor or a BMS (analog input (0 - 10 VDC) or a volt-free input).

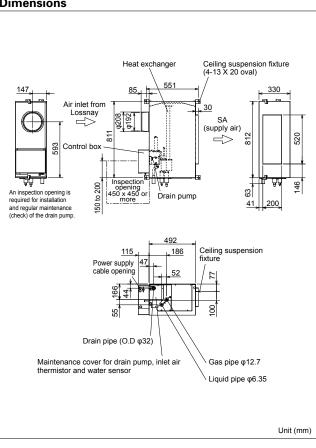
*During fan speed 1 or 2, the Dx-coil unit is always set to thermo-OFF

	Operation	Fan speed order	Actual fan speed				
	mode	from external input	Temp. priority	Fan speed priority			
		FS4	FS4	FS4			
	Heating	FS3	FS3	FS3			
	Cooling	FS2	FS3	FS2			
	Cooming	FS1	FS3	FS1			
		FS4	FS4	FS4			
	Гол	FS3	FS3	FS3			
	Fan	FS2	FS2	FS2			
		FS1	FS1	FS1			

Specifications

GUG-01SL-E (Connection to LGH-50RVX-E or LGH-65RVX-E)

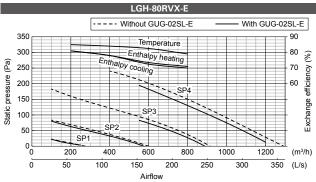


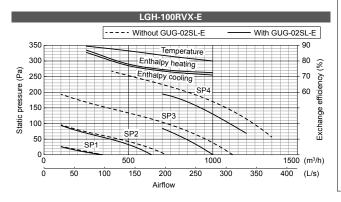

GUG-01SL-E

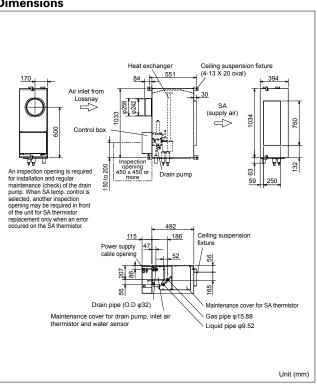
Refrigerant		R410A										
Electrical power supp	oly	220-240V / 50Hz	20-240V / 50Hz, 220V / 60Hz (Supplied from outdoor unit)									
Input power		Heating / Fan: 2.5W, Cooling: 12.4W										
Running current		Less than 0.1A										
Weight		21kg *Accessories: Approx. 1kg										
Heating / Cooling / Auto / Fan *Auto is only available for RA temporal					for RA temperatur	re control						
Function		RA (Return Air) to	emperature control									
	RA (Return Air) temperature control											
Connectable Lossnay	/ unit		LGH-50	DRVX-E			LGH-6	5RVX-E				
Conneity [I/M]	Heating		6.5 (2.4	1 + 4.1)			7.7 (3.2	2 + 4.5)				
Capacity [kW]	Cooling		5.6 (2.0	0 + 3.6)		6.6 (2.6 + 4.0)						
SHF	,		0.0	66			0.	69				
Performance index	Heating		4.0	09			4.	72				
Performance index	Cooling		4.0	69		5.03						
Airflow range at SP3	and SP4		350 - 6	95 m³/h			350 - 9	00 m³/h				
Connectable outdoor	unit		PUHZ-	ZRP35			PUHZ-	ZRP35				
E.A. alalaa			Diameter Liquid	I / Gas: 6.35 / 12.7			Diameter Liquid	d / Gas: 6.35 / 12.7				
Ext. piping		Max	imum length: 50m,	Maximum height:	30m	Max	imum length: 50m.	, Maximum height:	30m			
Ventilation :						pecifications						
Fan speed SP4 SP3 SP2 SP1						SP4	SP3	SP2	SP1			
Airflow	[m³/h]	500	375	250	125	650	488	325	163			
Allilow	[L/s]	139	104	69	35	181	135	90	45			
External static pressu	ıre [Pa]	105	105 59 26 7 95 53 24 6									

Characteristic Curves

- - Without GUG-01SL-E With GUG-01SL-E 350 Temperature Enthalpy heating 80 300 % 70 Static pressure (Pa) 60 200 150 Exchange SP3 50 SP1 700 (m³/h) 100 200 300 400 500 600 180 40 60 100 120 160 Airflow


GUG-02SL-E (Connection to LGH-80RVX-E or LGH-100RVX-E)

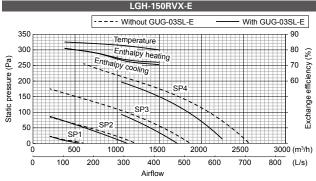


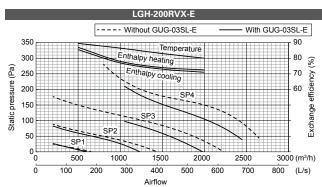

GUG-02SL-E

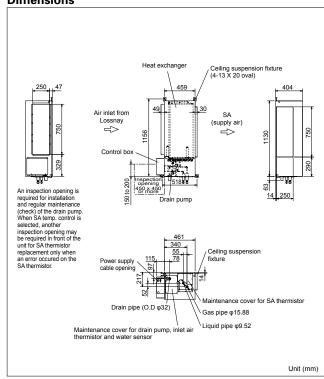
Refrigerant		R410A									
			0001//0011-/0								
Electrical power supp	oiy			oplied from outdoo	unit)						
Input power			W, Cooling: 12.4W	<u>/</u>							
Running current		Less than 0.1A									
Weight			ries: Approx. 1kg								
		Heating / Cooling / Auto / Fan *Auto is only available for RA temperature control									
Function		RA (Return Air) temperature control / SA (Supply Air) temperature control [Must be set at initial setting and not possible to change from remote controller]									
					RA (Return Air) te	emperature control					
Connectable Lossnay				ORVX-E				00RVX-E			
Capacity [kW]	Heating		10.0 (4.					.1 + 8.1)			
	Cooling		8.3 (3.3	3 + 5.0)			11.3 (4.	.2 + 7.1)			
SHF			0.	69			0.	66			
Performance index	Heating			62			4.	42			
	Cooling		4.	76			4.	98			
Airflow range at SP3	and SP4		560 - 12	200 m³/h			700 - 12	200 m³/h			
Connectable outdoor	nectable outdoor unit PUHZ-ZRP50 PUHZ-ZRP71										
For a factor of			Diameter Liquic	/ Gas: 6.35 / 12.7		Diameter Liquid / Gas: 9.52 / 15.88					
Ext. piping		Max	imum lenath: 50m.	Maximum height:	30m	Max	imum lenath: 50m	, Maximum height:	30m		
Required optional pa	rts		PAC-SH30RJ-E at	nd PAC-SH50RJ-E				-			
		SA (Supply Air) temperature control									
Connectable Lossna	y unit		LGH-80	RVX-E		LGH-100RVX-E					
	Heating		10.0 (4.	0 + 6.0)		11.4 (5.1 + 6.3)					
Capacity [kW]	Cooling		8.3 (3.3	3 + 5.0)		9.5 (4.2 + 5.3)					
SHF	1 3			69				73			
	Heating		4.	62		5.09					
Performance index	Cooling			76		5.43					
Airflow range at SP3			560 - 12	200 m³/h			700 - 12	200 m³/h			
Connectable outdoor				ZRP50				-ZRP50			
	u			/ Gas: 6.35 / 12.7				d / Gas: 6.35 / 12.7			
Ext. piping	Ext. piping Maximum length: 50m, Maximum height: 30m								30m		
Required optional parts PAC-SH30RJ-E and PAC-SH50RJ-E						Maximum length: 50m, Maximum height: 30m PAC-SH30RJ-E and PAC-SH50RJ-E					
rioquirou optionai pa			1710 01100110 2 41	Ventilation spec	ifications	FAC-SHOUND-L dilu FAC-SHOUND-E					
Connectable Lossna	v unit		LGH-80	DRVX-E	modiforio-	LGH-100RVX-E					
Fan speed	,	SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1		
	[m³/h]	800	600	400	200	1.000	750	500	250		
Airflow	[L/s]	222	167	111	56	278	208	139	69		
External static pressu		130	73	33	8	130	73	33	8		
- Morrial olatio prossi	[· u]	100	, ,		•	100	, , ,				

Characteristic Curves

Specifications

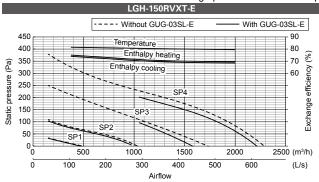

GUG-03SL-E (Connection to LGH-150RVX-E or LGH-200RVX-E)

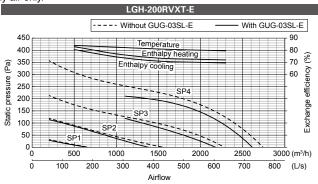


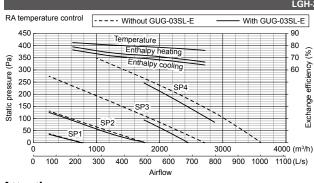

GUG-03SL-E

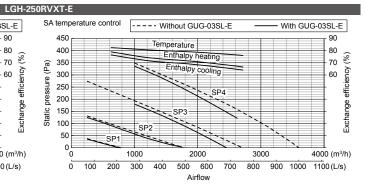
Refrigerant		R410A										
Electrical power supp	ale e		0001//0011=/0:	unlined from a state of								
Input power supp	лу		20-240V / 50Hz, 220V / 60Hz (Supplied from outdoor unit) eating / Fan: 2.5W, Cooling: 12.4W									
Running current		Less than 0.1A	544, Cooling. 12.44									
Weight			ries: Approx. 1kg									
vveigni		. 3		ita ia ambi available	for DA townserstu	un nombuni						
Function		Heating / Cooling / Auto / Fan *Auto is only available for RA temperature control										
Function		RA (Return Air) temperature control / SA (Supply Air) temperature control [Must be set at initial setting and not possible to change from remote controller]										
					RA (Return Air) te	emperature control						
Connectable Lossnay unit LGH-150RVX-E							LGH-20	00RVX-E				
Capacity [kW]	Heating		20.7 (7.7	7 + 13.0)			23.8 (10.	.3 + 13.5)				
Capacity [KVV]	Cooling		15.8 (6.	3 + 9.5)			18.4 (8.4	4 + 10.0)				
SHF			0.0	68			0.	.76				
Performance index	Heating			24				.02				
r enormance muex	Cooling 5.27						5.	.86				
Airflow range at SP3	ange at SP3 and SP4 1050 - 2250 m³/h 1050 - 2600 m³/h											
Connectable outdoor	unit		PUHZ-Z	ZRP100			PUHZ-ZRP100					
Ext. piping			Diameter Liquid	/ Gas: 9.52 / 15.88	3		Diameter Liquid	/ Gas: 9.52 / 15.88	3			
Lxt. piping		Max	imum length: 75m,	Maximum height:			imum length: 75m,	, Maximum height:	30m			
		SA (Supply Air) temperature control										
Connectable Lossnay	/ unit		LGH-15	0RVX-E		LGH-200RVX-E						
Capacity [kW]	Heating		16.6 (7.	7 + 8.9)		19.5 (10.3 + 9.2)						
Capacity [KVV]	Cooling		13.4 (6.	3 + 7.1)		15.9 (8.5 + 7.4)						
SHF			0.8	85		0.90						
Performance index	Heating		5.4	46		6.30						
renormance index	Cooling		5.3	32			5.	85				
Airflow range at SP3	and SP4		1050 - 22	250 m³/h			1050 - 2	600 m ³ /h				
Connectable outdoor	unit		PUHZ-	ZRP71			PUHZ-	-ZRP71				
Fut minima			Diameter Liquid	/ Gas: 9.52 / 15.88	3		Diameter Liquid	/ Gas: 9.52 / 15.88	3			
Ext. piping Maximum length: 50m, Maximum height: 30m						Maximum length: 50m, Maximum height: 30m						
					Ventilation s	pecifications						
Connectable Lossnay	/ unit		LGH-15	0RVX-E			LGH-20	00RVX-E				
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1			
Airflow	[m³/h]	1,500	1,125	750	375	2,000	1,500	1,000	500			
All IIOW	[L/s] 417 313 208					556	417	278	139			
External static pressure [Pa] 150 84 38 9						105	59	26	7			

Characteristic Curves






GUG-03SL-E (Connection to LGH-150RVXT-E, LGH-200RVXT-E or LGH-250RVXT-E)


Refrigerant													
Electrical power supp	oly	220-240V /	50Hz, 220V	/ / 60Hz (Sup	oplied from o	utdoor unit)							
Input power	-	Heating / F	an: 2.5W, Co	ooling: 12.4V	V								
Running current		Less than ().1A										
Weight		28kg *Ad	cessories: A	pprox. 1kg									
		Heating / C	ooling / Auto	/Fan *Au	uto is only av	ailable for R	A temperatu	re control					
Function		RA (Return [Must be se	RA (Return Air) temperature control / SA (Supply Air) temperature control [Must be set at initial setting and not possible to change from remote controller]										
						RA (F	Return Air) te	emperature c	ontrol				
Connectable Lossnay	y unit		LGH-150	ORVXT-E			LGH-200	0RVXT-E			LGH-25	0RVXT-E	
Capacity [kW]	Heating		20.4 (7.4	4 + 13.0)			23.8 (10.	.3 + 13.5)			26.1 (12	.1 + 14.0)	
Capacity [KVV]	Cooling	Cooling 15.7 (6.2 + 9.5)					18.4 (8.4	4 + 10.0)			22.3 (9.	8 + 12.5)	
SHF			0.68				0.	76			0.	87	
Performance index	Heating 4.07							86				.75	
Cooling 5.03							59				59		
Airflow range at SP3 and SP4 1050 - 2250 m³/h						1050 - 2600 m³/h 1750 - 2880 m³/h							
Connectable outdoor	unit		PUHZ-	PUHZ-ZRP100 PUHZ-ZRP100 PUHZ-ZRP125		PUHZ-ZRP100 PUHZ-ZRP125							
Ext. piping		Diame	ter Liquid	/ Gas: 9.52	/ 15.88	Diame	ter Liquid	/ Gas: 9.52	15.88	Diame	eter Liquid	/ Gas: 9.52	15.88
Ext. pipirig		Maximum	length: 75m,	Maximum h	eight: 30m		length: 75m,			Maximum	length: 75m	, Maximum h	eight: 30m
			SA (Supply Air) temperature control										
Connectable Lossnay	y unit	LGH-150RVXT-E				LGH-200RVXT-E			LGH-250RVXT-E				
Capacity [kW]	Heating		16.3 (7.	4 + 8.9)		19.5 (10.3 + 9.2)			21.6 (12.1 + 9.5)				
. ,, ,	Cooling		13.3 (6	.2 + 7.1)		15.9 (8.5 + 7.4)					17.6 (9	.8 + 7.8)	
SHF				86		0.90					0.	.95	
Performance index	Heating		5.	16		6.01					5.	97	
	Cooling			03				54				31	
Airflow range at SP3	and SP4		1050 - 2	250 m³/h			1050 - 2	600 m³/h			1000 - 2	600 m ³ /h	
Connectable outdoor	unit			ZRP71				ZRP71				-ZRP71	
Ext. piping		Diame		/ Gas: 9.52		Diame		/ Gas: 9.52		Diame		/ Gas: 9.52	
Ext. piping	Maximum length: 50m, Maximum height: 30				eight: 30m		length: 50m,			Maximum	length: 50m	, Maximum h	eight: 30m
							Ventilation s						
	onnectable Lossnay unit			ORVXT-E				0RVXT-E				0RVXT-E	
Fan speed		SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1	SP4	SP3	SP2	SP1
Airflow	[m³/h]	1,500	1,125	750	375	2,000	1,500	1,000	500	2,500	1,875	1,250	625
	[L/s]	417	313	208	104	556	417	278	139	694	521	347	174
External static pressu	ıre [Pa]	150	84	38	9	145	82	36	9	140	79	35	9

Characteristic Curves Note The graphs below show the supply air only.

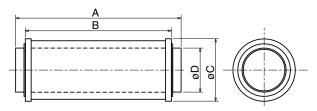
Attention

- 1. The running current and input power are based on 230V/50Hz.
- The cooling and heating capacities are based on the air conditions listed below and the rated airflow of fan speed 4. Cooling Indoor: 27°CDB/19°CWB, Outdoor: 35°CDB/24°CWB Heating Indoor: 20°CDB/15°CWB, Outdoor: 7°CDB/6°CWB
- 3. The first figure in () of the capacity specification is the heat recovery energy of the Lossnay unit. The second figure is the capacity specification for the Dx-coil connected to the outdoor unit.
- 4. "Performance index" is the calculated value at the temperature conditions above, and is for reference purpose only. Performance index = Total capacity ÷ total power consumption of outdoor unit and Lossnay unit
- Ferromance index = local capacity + total power consumption of outdoor unit and cossing unit.

 5. The external static pressure listed in the tables includes the static pressure loss of the Dx-coil unit when using a 50cm straight duct between the Lossnay and Dx-coil units.

 When the duct work between the Lossnay and Dx-coil units is longer and/or bent, the pressure loss of the duct work should be included in the pressure loss calculation.
- 6. The designed airflow of the system (Lossnay, Dx-coil and duct work) at fan speed 3 and 4 should be kept within "Airflow range at SP3 and SP4" listed in the tables. This range is shown as the solid line in graphs of the characteristic curves. If the Lossnay airflow is out of this range, the compressor of the outdoor unit may stop for self-protection purposes.
- 7. By installing the Dx-coil unit with a Lossnay unit, the air blow noise level is quieter at fan speed 4. Please refer to the "Direct Expansion coil unit for Lossnay" catalog.
- 8. Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 1975. This means that if 1kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 1975 times higher than 1kg of CO₂, over a period of 100 years. Never try to interfere with the refrigerant circuit or disassemble the product yourself and always ask a professional.

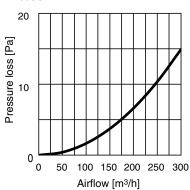
Duct Silencer


- This duct silencer connects to Lossnay unit to reduce the noise of its airflow.
- There are 4 sizes in order to cover a wide range of duct sizes.

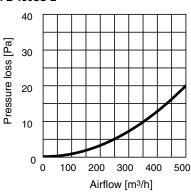
Specifications

Model	Airflow											
Wiodei	[m ³ /h]	62.5Hz	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	8000Hz			
PZ-100SS-E	50	0	3	5	7	6	6	6	8			
PZ-10055-E	150	0	3	6	7	7	7	7	9			
D7.45000 F	250	0	1	5	8	15	21	20	14			
PZ-150SS-E	350	0	1	4	8	14	21	21	16			
PZ-200SS-E	500	0	1	4	7	13	18	16	9			
PZ-20055-E	650	0	1	3	8	12	17	14	6			
PZ-250SS-E	800	0	2	4	12	22	21	14	13			
	1000	0	1	4	12	22	20	14	13			

Dimensions

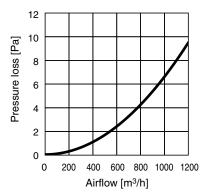


Unit: mm


Model	Α	В	С	D	Connecting duct	Weight (kg)
PZ-100SS-E	450	400	152	52 99 ø100		1.9
PZ-150SS-E	560	500	202	149	ø150	3.5
PZ-200SS-E	660	600	252	199	ø200	5.3
PZ-250SS-E	660	600	332	249	ø250	8.9

Pressure loss curve


PZ-100SS-E


PZ-150SS-E

PZ-200SS-E

PZ-250SS-E

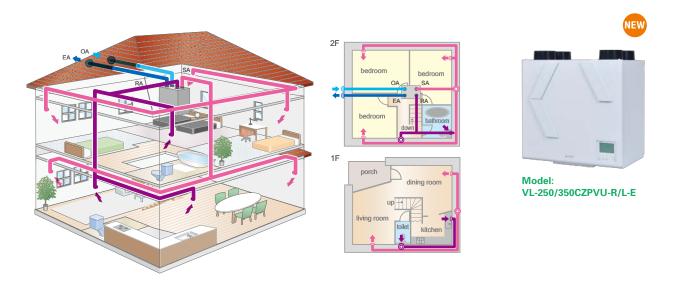
Optional Parts List

	Lossnay	E	핒	ų	ų	ų	ų	X-E	X-E	X-E	XT-E	XT-E	XT-E		4	4	H4
		LGH-15RVX-E	LGH-25RVX-E	LGH-35RVX-E	LGH-50RVX-E	LGH-65RVX-E	LGH-80RVX-E	LGH-100RVX-E	LGH-150RVX-E	LGH-200RVX-E	LGH-150RVXT-E	LGH-200RVXT-E	LGH-250RVXT-E	GUF-50RD4	GUF-50RDH4	GUF-100RD4	GUF-100RDH4
Optional Parts		LG	LG	<u> </u>	Ę	Ę	<u> </u>	2	9	ē	9	9	9	GU	GO	ß	GU
Lossnay	PZ-61DR-E	•	•	•	•	•	•	•	•	•	•	•	•				
Remote Controller	PZ-43SMF-E	•	•	•	•	•	•	•	•	•	•	•	•				
	PZ-15RF ₈ -E	•															
	PZ-25RF ₈ -E		•														
	PZ-35RF ₈ -E			•													
Standard	PZ-50RF ₈ -E				•									•	•		
Filter	PZ-65RF ₈ -E					•											
	PZ-80RF ₈ -E						•		•								
	PZ-100RF ₈ -E							•		•						•	•
	PZ-150RTF-E										•						
	PZ-250RTF-E											•	•				
	PZ-15RFM-E	•															
	PZ-25RFM-E		•														
	PZ-35RFM-E			•													
	PZ-50RFM-E				•									•	•		
	PZ-65RFM-E					•											
	PZ-80RFM-E						•		•								
	PZ-100RFM-E							•		•						•	•
	PZ-15RFP ₂ -E	•															
	PZ-25RFP ₂ -E		•														
	PZ-35RFP ₂ -E			•													
	PZ-50RFP ₂ -E				•									•	•		
Advanced High-efficiency	PZ-65RFP ₂ -E					•											
Filters	PZ-80RFP ₂ -E						•		•								
	PZ-100RFP ₂ -E							•		•						•	•
	PZ-M6RTFM-E										•	•	•				
	PZ-F8RTFM-E										•	•	•				
	PZ-100SS-E	•															
Duat Silanaar	PZ-150SS-E		•	•													
Duct Silencer	PZ-200SS-E				•	•								•	•		
	PZ-250SS-E						•	•								•	•
WiFi Interface	MAC-567IF-E	•	•	•	•	•	•	•	•	•	•	•	•				
Remote On/Off Adapter	PAC-SE55RA-E	●*1	●*1	●*1	●*1	●*1	●*1	●*1	●*1	●*1	●*1	●*1	●*1	●*1	●*1	●*1	●*1
Connector Cable for Remote Display	PAC-SA88HA-E	●*2	●*2	●*2	●*2	●*2	●*2	●*²	●*2	●*2	●*²	●*²	•*2	●*3	●*3	●*3	●*3

^{*1:} PAC-SE55RA-E is used for CN32 of Lossnay unit.

*2: PAC-SA88HA-E is used for CN17 and CN26 of Lossnay unit.

*3: PAC-SA88HA-E is used for CN51 and CN52 of Lossnay unit.

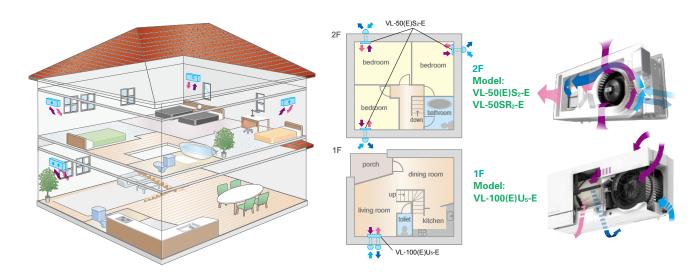

Note: Please refer to each product page for required number of pieces/sets.

Residential Use Lossnay

Mitsubishi Electric offers you decentralized ventilation and centralized ventilation solutions for optimising your indoor air quality by Lossnay.

Centralized Ventilation Solution

One Lossnay unit provides 24-hour ventilation for the entire house, from living room and bedrooms to the bathroom. The heat recovery system provides fresh air at a comfortable air temperature. Sensible heat exchanger effectively reduces excess humidity in the winter.



Decentralized Ventilation Solution

Install the wall-mounted Lossnay in each room.

The heat recovery system provides fresh air at a comfortable air temperature.

Total heat exchangers effectively reduce heat loss.

VL-250CZPVU-R/L-E, VL-350CZPVU-R/L-E

Quiet Operation

Noise is one of the most common concern for residential ventilation. Ultra quiet operation is achieved with the sirocco fan designed by Mitsubishi Electric. The balance between airflow and the static pressure is optimized and the fan rotation is minimized, which leads to a low noise level.

Air Purification

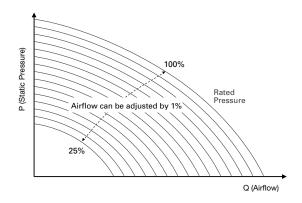
The optional filter corresponding to NOx and PM2.5 removes the substance and improves the indoor air quality. They can be incorporated inside the unit without any filter box, which saves space.

- *NOx: Nitrogen oxide which includes nitric oxide (NO) and nitrogen dioxide (NO2) etc.
- *PM2.5: Airborne particulates that are 2.5µm or smaller in size.

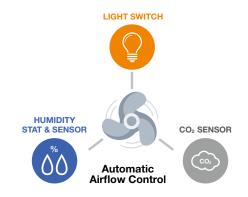
Wi-Fi Control

MELCloud is a Cloud-based solution for controlling Lossnay either locally or remotely by computer, tablet or smartphone via the Internet. You can control and check Lossnay via MELCloud from virtually anywhere an Internet connection is available. With MELCloud, you can use Lossnay much more easily and conveniently.

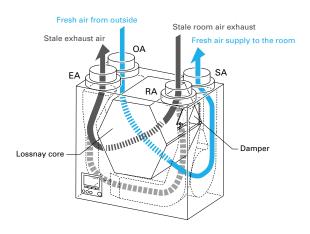
Key Features


Energy Efficient

Under regulation (EU) NO 1254 / 2014, VL-CZPVU series has the highest energy-saving performance in its class. (ErP A+) It saves heating and cooling cost by minimizing the energy loss that occurs during ventilation.


Variable Airflow Control

The default fan speed value (Fan speed 1: 30%, Fan speed 2: 50%, Fan speed 3: 70%, and Fan speed 4: 100%) of both supply air and exhaust air can be adjusted more flexibly. Within the range between 25% and 100%, airflow can be adjusted by 1% to satisfactorily meet the designed airflow rate. This enables to simplify the airflow setting in commissioning.


External Airflow Control

Using a 0-10V signal from the controllers such as the humidity stats and CO_2 sensors, the airflow of the Lossnay unit can be changed. It is also connected to the light switch and can change to the boost operation (Input 220-240V). They are connected directly to the Lossnay units allowing the fan speed to automatically change according to the bathroom occupation, the CO_2 level, and the humidity level.

Automatic Bypass Mode

It is possible to select manual switching or automatic switching between "Lossnay ventilation (with heat exchange)" and "Bypass ventilation (without heat exchange)". When the outside air is cooler than the indoor air in summer, the unit will bypass the heat exchanger and draw in outside air directly.

* The figure shows VL-350CZPVU-L-E

Wide Operating Temperature Range

The VL-CZPVU series operating temperature range is down to -15°C. With a pre-heater, it is available down to -25°C.

- * In areas where the outdoor air is below -20°C, electric shutters (local supply) is required in the OA duct in addition to the pre-heater.
- * With the pre-heater, the OA temperature must be higher than -15 $^{\circ}\text{C}.$

MELCloud for Lossnay

MELCloud enables fast, easy remote control and monitoring for Lossnay. All you need is wireless computer connectivity in your home where Lossnay is installed and Internet connection on your mobile or fixed terminal. It can also be controlled with room air conditioner/ecodan simultaneously.

Key Control and monitoring features

- 1. Turn system on/off
- 2. Change the airflow & operating mode (Heat recovery / Bypass)
- 3. See the status of the filter (Maintenance notification)

New Ventilator Selection Software

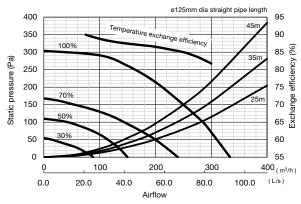
The new selection tool enables the user to see the specification of the duty point including SFP, noise level, and exchange efficiency. It also provides the certification documents and CAD data for each models.

Easy 3 steps

- 1. Input the required airflow and pressure.
- 2. Select model which matches the request.
- 3. Output the "Fan Data Sheet" by PDF.

YouTube Channel

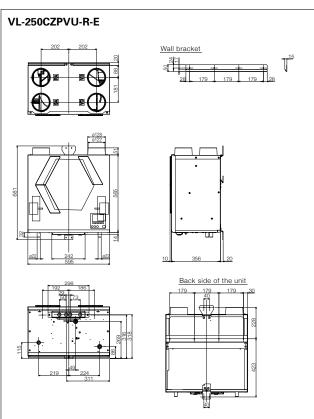
In the new YouTube channel "Mitsubishi Electric Nakatsugawa Works", videos about ventilation products, remote controller commissioning, how to use the software is available.

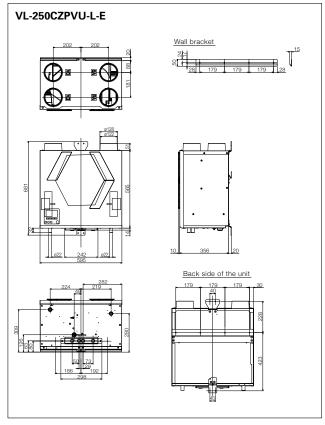

Residential Lossnay Specifications

VL-250CZPVU-R/L-E

Electrical Power Supply			220-240V/50H	Iz, 220V/60Hz				
Ventilation Mode			Heat recov	very mode				
Fan speed		FS4 (100%)	FS3 (70%)	FS2 (50%)	FS1 (30%)			
Running Current (A)		0.76	0.35	0.20	0.12			
Input Power (W)		106	44	23	11			
Airflow	(m ³ /h)	250	175	125	75			
All How	(l/s)	69	49	35	21			
External Static Pressure (Pa	a)	150	74	38	14			
Temperature Exchange Effi	ciency (%)	85	87	88	90			
Noise Level (dB)		31	22	16	15>			
Energy Efficiency Class			Α	<u>,</u> +				
Weight (kg)		26						
Dimensions (mm)			(W) 595 x (D)	356 x (H) 565				

- 1. The above values are at factory default.
 2. The running current, the input power, the efficiency and the noise are based on the rating air volume, and 230V/50Hz.
 3. The sound pressure level at 3m is spherical.
 4. Temperature exchange efficiency (%) is based on winter condition.
 5. Mitsubishi Electric measures figures in the chart according to EN13141-7:2010, and the characteristic curves are measured by chamber method.

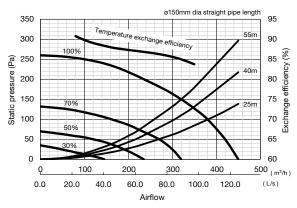

Characteristic Curves



Attention

- Mitsubishi Electric measures figures in the chart according to EN13141-7:2010, and the characteristic curves are measured by chamber method.

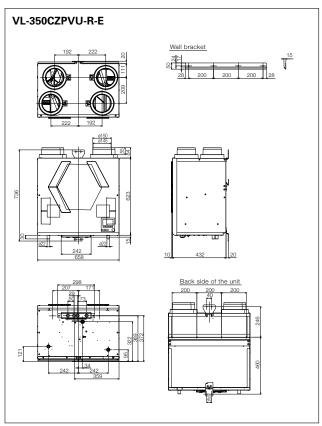
Dimensions Unit: mm

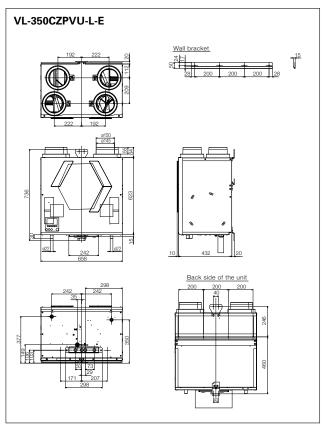


VL-350CZPVU-R/L-E

Electrical Power Supply			220-240V/50H	Hz, 220V/60Hz				
Ventilation Mode			Heat recov	very mode				
Fan speed		FS4 (100%)	FS3 (70%)	FS2 (50%)	FS1 (30%)			
Running Current (A)		1.08	0.52	0.31	0.18			
Input Power (W)		155	71	37	19			
Airflow	(m ³ /h)	320	224	160	96			
All How	(l/s)	89	62	44	27			
External Static Pressure (Pa	a)	150	74	38	14			
Temperature Exchange Effi	ciency (%)	85	87	88	90			
Noise Level (dB)		35	26	19	15>			
Energy Efficiency Class			Δ	\+				
Weight (kg)		32						
Dimensions (mm)			(W) 658 x (D)	432 x (H) 623				

- 1. The above values are at factory default.
 2. The running current, the input power, the efficiency and the noise are based on the rating air volume, and 230V/50Hz.
 3. The sound pressure level at 3m is spherical.
 4. Temperature exchange efficiency (%) is based on winter condition.
 5. Mitsubishi Electric measures figures in the chart according to EN13141-7:2010, and the characteristic curves are measured by chamber method.

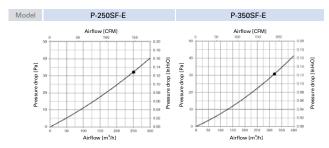

Characteristic Curves

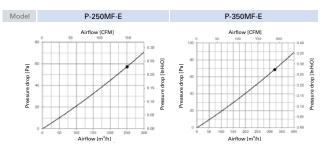


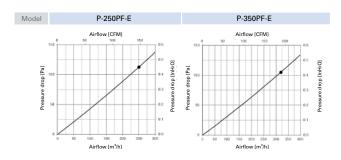
■ Attention

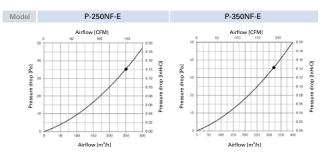
Mitsubishi Electric measures figures in the chart according to EN13141-7:2010, and the characteristic curves are measured by chamber method.

Dimensions Unit: mm






Filters


Тур	9	Replacement Filter Standard Filter		Medium Efficiency Filter	PM2.5 Filter	NOx Filter
Desiç	gn					
Mod	el	P-250F-E P-350F-E	P-250SF-E P-350SF-E	P-250MF-E P-350MF-E	P-250PF-E P-350PF-E	P-250NF-E P-350NF-E
Classification	EN779 (2012)	G3	G4	M6	M6	NO2 90%
Ciassification	ISO 16890	Coarse 55%	Coarse 90%	ePM10 80%	ePM2.5 50%	1402 90 70

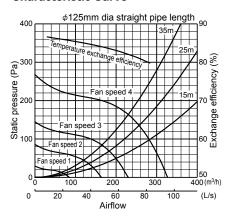
Pressure loss characteristic

Remote Controller Cover

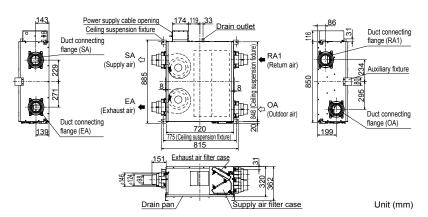
P-RCC-E

With Remote Controller Cover, the remote controller can be installed apart from the unit.

Model: VL-220CZGV-E


Model		VL-220CZGV-E						
Electrical power supply		220-240V/50Hz 220V/60Hz						
Ventilation mode			Heat reco	very mode				
Fan speed		Fan speed 4	Fan speed 3	Fan speed 2	Fan speed 1			
Running current		0.60	0.29	0.18	0.11			
Input power (W)		80	35	18.5	8.5			
Airflow	(m³/h)	230	165	120	65			
Airilow	(L/s)	64	46	33	18			
External static pressure (Pa)		164	84	44	13			
Temperature exchange efficie	ncy (%)	82	84	85	86			
Noise level (dB)		31	25	19	14			
Weight (kg)			3	31				
Specific energy consumption of	class		A					

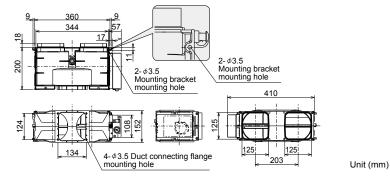
- 1. The running current, the input power, the efficiency and the noise are based on the rating air volume, and 230V/50Hz. The noise is measured at 1.5m under the center of the unit in an anechoic chamber.
- in an anection charmber.


 2. Temperature exchange efficiency (%) is based on winter condition.

 3. Mitsubishi Electric measures figures in the chart according to Japan Industrial Standard (JIS B 8628), therefore the characteristic curves are measured by chamber method.

Characteristic Curve

Dimensions



Optional Parts

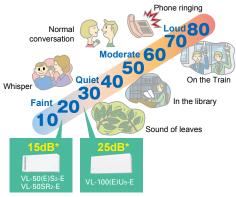
Parts for VL-220CZGV-E

Bypass Damper Model: P-133DUE-E

Filters

Туре	Standard Replacement Filter	Medium Efficiency Exhaust Air Filter	High Efficiency Supply Air Filter
Design		Optional	Optional
Model	P-220F-E	P-220EMF-E	P-220SHF-E
Classification (EN779:2012)	G3	G4	M6
Classification (ISO16890)	Coarse 35%	ePM10 50%	ePM10 70%

Decentralized ventilation: VL-50(E)S2-E, VL-50SR2-E and VL-100(E)U5-E


Product Merit

Air supplied and Exhausted Simultaneously

Supply and exhaust air simultaneously while transferring the heat.

The low noise level is good for bedrooms and children's rooms.

*Condition: 50Hz. 230V. low fan spee

Energy Efficient

- Total heat exchanger minimizes heat loss.
- Achieve over 80%* temperature efficiency.
- $^*\mbox{VL-}100(\mbox{E})\mbox{U}_5\mbox{-E}$ at low fan speed in 230V 50Hz $^*\mbox{VL-}50(\mbox{E})\mbox{S}_2\mbox{-E}$ at low fan speed in 230V 50Hz

Sound Insulation

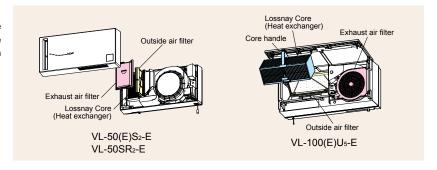
A sound insulation effect reduces noise generated outside.

- *Tested based on VL-08S2-AE
- *Measured by average sound pressure level of more than 30dB in 500Hz according to JIS A1416.
- VL-08S2-AE is a Japanese dedicated model equivalent to VL-50(E)S2-E

Product Features

Stylish Design

Match any interior decor to create a comfortable room.



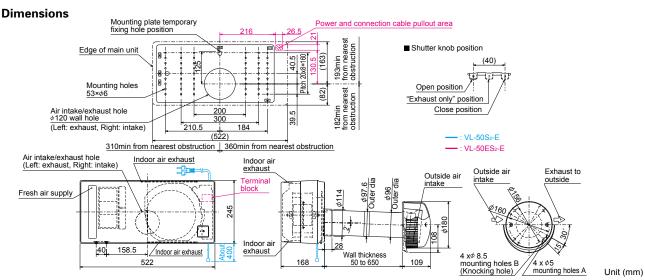
VL-100(E)U5-E

Easy Maintenance

The only maintenance required is cleaning the outside-air filter and exhaust-air filter. Filters are easily accessible, making quick and thorough cleaning possible.

Flexible Installation for Only VL-50(E)S₂-E and VL-50SR₂-E

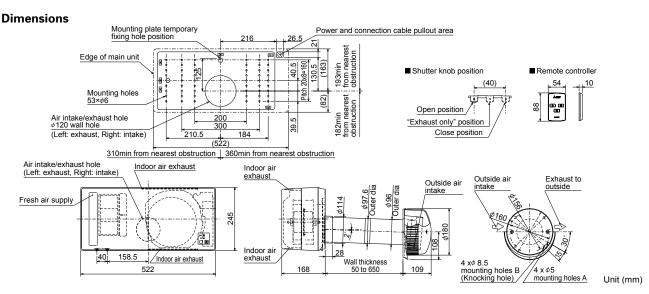
Not only horizontal installation but also vertical installation is available. It can fit various types of rooms with flexible installation.



Residential Lossnay Specifications

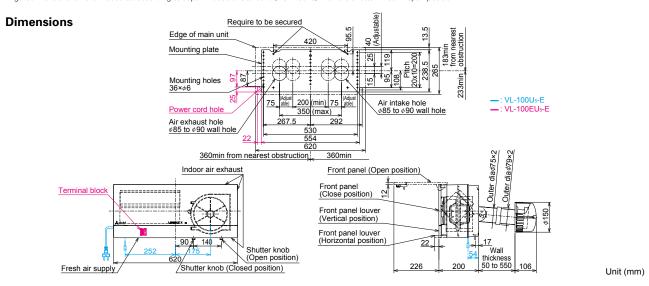
Model: VL-50S2-E (Pull-Switch Model) and VL-50ES2-E (Wall-Switch Model)

Model		VL-50(E)S₂-E						
Electrical power supply	220V	220V/50Hz		230V/50Hz 24		/50Hz	220V/60Hz	
Fan speed	High	Low	High	Low	High	Low	High	Low
Airflow (m³/h)	51	15	52.5	16	54	17	54	17
Power consumption (W)	19	4	20	4.5	21	5	21	5.5
Temperature exchange efficiency (%)	70	86	69	85	68	84	68	84
Noise level (dB)	36.5	14	37	15	37.5	15.5	37.5	15.5
Weight (kg)	6.2							
Specific energy consumption class	С							


^{*}Figures in the chart were measured according to Japan Industrial Standard (JIS B 8628) with the shutter knob in open position.

Model: VL-50SR₂-E (Remote Controller Model)

Model		VL-50SR₂-E								
Electrical power supply	220V	220V/50Hz		/50Hz	240V	/50Hz	220V	/60Hz		
Fan speed	High	Low	High	Low	High	Low	High	Low		
Airflow (m³/h)	51	15	52.5	16	54	17	54	17		
Power consumption (W)	19	4.5	20	5	21	5.5	21	6		
Temperature exchange efficiency (%)	70	86	69	85	68	84	68	84		
Noise level (dB)	36.5	14	37	15	37.5	15.5	37.5	15.5		
Weight (kg)	6.2									
Specific energy consumption class				(2					


^{*}Figures in the chart were measured according to Japan Industrial Standard (JIS B 8628) with the shutter knob in open position.

Model: VL-100U5-E (Pull-Switch Model) and VL-100EU5-E (Wall-Switch Model)

Model		VL-100(E)U₅-E							
Electrical power supply	220V,	220V/50Hz		/50Hz	240V/	/50Hz	220V/60Hz		
Fan speed	High	Low	High	Low	High	Low	High	Low	
Airflow (m³/h)	100	55	105	60	106	61	103	57	
Power consumption (W)	30	13	31	15	34	17	34	17	
Temperature exchange efficiency (%)	73	80	73	80	72	79	73	80	
Noise level (dB)	36.5	24	37	25	38	27	38	25	
Weight (kg)	7.5								
Specific energy consumption class		В							

^{*}Figures in the chart were measured according to Japan Industrial Standard (JIS B 8628) with the shutter knob in open position.

Optional Parts

Optional Parts for VL-50(E)S₂-E and VL-50SR₂-E

Filter, Extension Pipe and Stainless Hood

Туре	Replacement Filter	High Efficiency Filter	Extension Pipe	Joint	Stainless Hood
Design					
Model	P-50F ₂ -E	P-50HF ₂ -E	P-50P-E	P-50PJ-E	P-50VSQ5-E
Feature	-	-	Total length when connected to the joint is 350mm.	Joint for extension pipe	Stylish stainless hood
Classification (EN779:2012)	G3	-	-	-	-
Classification (ISO16890)	Coarse 35%	ePM ₁₀ 75%	-	-	-

Optional Parts for VL-100(E)U₅-E

Filter and Extension Pipe

Туре	Replacement Filter	High Efficiency Filter	Extension Pipe	Joint
Design				00
Model	P-100F ₅ -E	P-100HF5-E	P-100P-E	P-100PJ-E
Feature	-	-	Total length when connected to the joint is 300mm.	Joint for extension pipe Screw-in method
Classification (EN779:2012)	G3	M6	-	-
Classification (ISO16890)	Coarse 35%	ePM ₁₀ 70%	-	-